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Abstract

Rapid product lifecycles and high development costs pressure manufacturing firms to cut not only their development
times (time-to-market), but also the time to reach full capacity utilization (time-to-volume). The period between
completion of development and full capacity utilization is known as production ramp-up. During that time, the new
production process is ill understood, which causes low yields and low production rates. This paper analyzes the
interactions among capacity utilization, yields, and process improvement (learning). We model learning in the form of
deliberate experiments, which reduce capacity in the short run. This creates a trade-off between experiments and
production. High selling prices during ramp-up raise the opportunity cost of experiments, yet early learning is more
valuable than later learning. We formalize the resulting intertemporal trade-off between the short-term opportunity cost
of capacity and the long term value of learning as a dynamic program. The paper also examines the tradeoff between
production speed and yield/quality, where faster production rates lead to more defects. Finally, we show what happens if
managers misunderstand the sources of learning. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many high-tech industries are characterized by
shrinking product lifecycles and increasingly
expensive production equipment and up-front
costs. The market window for selling many prod-
ucts has shrunk to less than a year in industries
such as disk-drives and telecommunications. These
forces pressure organizations to cut not only their
development times (time-to-market), but also the
time it takes to reach full production volume (time-
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to-volume) in order to meet their financial goals for
the product (time-to-payback).

The period between the end of product develop-
ment and full capacity production is known as
production ramp-up. Two conflicting factors
are characteristic of this period: low production
capacity, and high demand. High demand arises
because the product is still “relatively fresh” and
might even be the first of its type. Thus, customers
are ready to pay a premium price. Yet output is low
due to low production rates and low yields. The
production process is still poorly understood and,
inevitably, much of what is made does not work
properly the first time. Machines break down,
setups are slow, special operations are needed to

0925-5273/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0925-5273(00)00045-1



2 C. Terwiesch, R.E. Bohn | Int. J. Production Economics 70 (2001) 1-19

correct product and process oversights, and other
factors impede output. Over time, with learning
about the production process and equipment,
yields and capacity utilization go up (although in
many industries they never reach 100%). Due to
the conflicts between low effective capacity and
high demand, the company finds itself pressured
from two sides, an effect referred to as the “nut-
cracker” [1].

A recent example of the importance of ramp-up
can be found in AMD’s efforts to compete with
Intel in the microprocessor market. AMD had sev-
eral generations of product that were slow to ramp,
leading to limited market acceptance and financial
difficulties for AMD. More recently, Intel experi-
enced problems ramping up the yield of its 0.18
micron version of the Pentium. Industry observers
speculate that an effective ramp-up of AMD’s K7
processor will allow AMD to compete in the high
end segment of the PC market (Electronic Buyers’
News, June 21, 1999).

In this article, we analyze the interactions among
capacity utilization, yields, and yield improvement
(learning) during ramp-up. Traditional learning-
curve models implicitly assume that manufacturing
performance increases with cumulative output
from the plant, more or less independent of mana-
gerial decisions. This is clearly an oversimplifi-
cation, and there is much that managers can do to
affect the rate of learning [2]. We concentrate on
deliberate learning through experiments such as
engineering trials, which are controlled experi-
ments using the production process as a laboratory.
Such trials are essential for diagnosing problems
and testing proposed solutions and process im-
provements. But they also use scarce production
capacity. This creates, a paradoxical trade-off
between regular production for revenue and experi-
mentation for learning. We formalize this intertem-
poral trade-off between short-term revenues and
long term learning benefits in form of a dynamic
program, and derive solutions for the cost, value,
and level of experimentation.

The trade-off between short-term output and
experiments, as well as more generally the phase
of production ramp-up, is of substantial managerial
importance. Launches of high-tech products.are
often either delayed or scaled back because of

ramp-up problems. For example ramp-up prob-
lems in the production of video chips led to sub-
stantial losses during the launch of the Sega
Dreamcast video console [3]. Similarly, pharma-
ceutical companies are struggling with ramping up
the production of biotechnology-based drugs, lead-
ing to sales losses at the time when prices are at
their premium [4]. This article models the complex
dynamics of a new product’s ramp-up, and assists
decision making by providing concrete values for
the cost and benefits of learning efforts. Specifically,
we show that a misperception about the underlying
drivers of learning can result in substantial finan-
cial losses over the lifecycle of a new product.

The remainder of this article is organized as
follows. Section 2 provides more background on
the assumptions of our model, and discusses several
strands of related literature. Section 3 describes
the type of production environments our analysis
is appropriate for and presents a simple model that
captures the interaction among capacity utilization,
process knowledge, and yields. The analysis of
this (static) model will be the basis for our
dynamic model of learning and process improve-
ment during production ramp-up, presented in
Section 4. Our results are illustrated by several
numerical examples in Section 5, where we show
that different cost and demand situations call for
different ramp-up strategies. Section 6 provides
a summary, managerial implications, and future
research directions.

2. Background

This paper draws on three strands of research, as
it is about manufacturing learning during ramp-up,
with yields the primary dependent variable. Each
new product introduced into a factory must under-
go a ramp-up. A new product’s ramp-up can last
a quarter of the product life cycle — several months
for a hard disk drive, for example. During this
period, yields and production rates gradually
increase as learning takes place. Important types of
learning typically include adjusting the process
recipe, modifying tooling and equipment to reduce
defects and downtime, and developing better and
faster inspection methods.
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Ramp-ups also occur when a new process or
a new plant starts up. These are often more difficult
and dramatic than new product ramp-ups, since
many additional variables need to be learned
about. Not all ramp-ups are successful, in either
technical or business terms. Sometimes the plant is
unable to raise yields to the breakeven level, or it
takes so long that the product never earns enough
revenue to repay its fixed costs.

Yields are an important state variable during
ramp-up because they have a major effect on pro-
cess economics and because low yields reflect gaps
in process understanding and are closely linked to
knowledge and learning [5]. The economic impact
of low yields can be much larger than their impact
on costs, since foregone revenue is usually a large
opportunity cost during ramp-up [6]. Production
speed and good output are also useful measures of
progress during ramp-up. As we model in Section 3,
the process manager often trades off yield and
speed, for example when considering how hard to
attempt to rework a bad unit before scrapping it.!
Therefore, we will model the optimal trajectories of
both yield and production rate over the course of
a ramp-up.

There is little published research on ramp-ups,
despite their ubiquity. Langowitz [7] conducts an
exploratory study of ramp-up of four electronics
products. Benfer [8] discusses the general problem
of rapid ramp-up at Intel. Both emphasize the rela-
tionship between development and successful
ramp-up. Clawson [9] discusses ramp-up in aero-
space. Wasserman and Clark [10] document
a problematic ramp-up of high-performance
semiconductors, in which yields remained close to
zero for months. Leachman [11] shows examples of
semiconductor fabs taking years to raise their
yields above 50 percent. As we model in Section 5,
protracted or ultimately unprofitable ramp-ups can

'In some assembly processes such as auto assembly it is
economical to rework all defectives, and final yields are therefore
very high. In this situation, first-pass yield or defect levels are
a better measure of technological understanding and status
during the ramp-up. For simplicity, this paper models situations
where final yields are a good measure, such as semiconductors,
disk drives, and parts fabrication processes.

arise when managers assume that learning will
occur automatically through experience, and there-
fore underinvest in deliberate learning through
experimentation.

2.1. Learning and experience curves

Although the importance of learning is widely
recognized, many models of manufacturing and
business strategy have focused on a single causal
explanation, the cumulative volume of production.
This is captured in the so-called experience curve
model, surveyed critically in Dutton et al. [12].
This model postulates that per unit costs fall as the
log of cumulative production [13]. Although this
model may provide a good fit to costs ex post, that
does not make it accurate or useful as a normative
guide. “But in their current forms progress func-
tions also have serious limitations. In offering
cumulative volume as the only policy input vari-
able, they fail to match the complex, underlying
dynamics of firms’ costs and imply that building
cumulative volume is the only way to achieve pro-
gress. However, examination of progress-function
studies reveals that sustained production often
provides producers with opportunities to effect cost
efficiencies that have little to do with cumulative
volume [2]”.

These criticisms are especially appropriate when
looking at ramp-ups, where the central goal is to
manage progress as rapidly as possible, and where
a naive experience curve model would suggest that
the rate and success of ramp-up are predetermined,
completely predictable, and beyond managerial
control.

Various researchers have gone beyond the
experience curve to investigate learning processes
in manufacturing in more detail, in an attempt to
“open the black box” and derive managerially use-
ful lessons. Several have done detailed investiga-
tions into how factory problems are solved and
learning occurs, emphasizing activities by the en-
gineers. Lapré et al. [14] show that many directed
improvement projects in fact have zero or negative
effects. They find that both sound theory and em-
pirical validation by experimentation are needed
before process changes are justified. Von Hippel
and Tyre [ 15] examine information flows and other
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aspects of problem solving for a variety of new
process introductions in plants.

Zangwill and Kantor [16] point out that learn-
ing can be viewed as happening in cycles, where the
result of one cycle is the starting point for the next
cycle. Each cycle can be viewed as removing some
“waste” from the manufacturing system, whether
that waste is defects, causing yield loss, waste time,
causing slower production, or something else such
as excess inventory. This provides a very general
framework in which many different forms of pro-
cess improvement can be modeled. As we discuss
later, this cyclic model of learning fits many aspects
of ramp-up, such as the diminishing returns to
experimentation in any one learning cycle. In their
model, the effort needed for each halving of waste
requires a roughly constant effort, giving processes
which approach asymptotically to a zero-waste
condition. Stata [17] provides extensive documen-
tation of halving times for many kinds of waste
reduction in a semiconductor company. In our
models, zero waste equates to 100% yield and pro-
duction at 100% of maximum theoretical speed.
We show in Section 4.4 that a constant amount of
experimentation is indeed needed for each halving
of waste, and that it is not optimal to keep the
experimentation level the same all the way through
ramp-up.

Many others have looked at learning at a more
aggregate level, to determine what factors drive
performance improvement. These include [18-25].
Most of these articles emphasize empirical fits to
data rather than conceptual models. Mody [26]
provides a model, which explicitly examines
engineering effort as a driver of learning. Dorroh
et al. [20] have a related model of make to order
production, with a production function that takes
knowledge and other resources as inputs. Know-
ledge is produced by explicit investment in learning,
independent of production. They examine the ef-
fects of discounting and other parameters on the
decisions of how much and when to produce and
learn.

2.2. What drives learning?

Although our model emphasizes deliberate
learning through experiments, we also allow for
learning to take place through cumulative experi-
ence. Management directly sets the rate of experi-
mentation and the production rate, subject to the
constraint of machine capacity. In the terminology
of Dutton and Thomas, experimentation is a form
of induced (deliberate) learning, while production
experience is autonomous (automatic) learning.
Fig. 1 shows the flow of causality.

/ L - Induced
1 _ Learning Cost per
Rate of Yield > d uni
¥ . LB good unit
Experimentation | _
. v
Maqagement Accumulated
Decision Knowledge
Maximum
Rate of — Output,
. o| Speed of N
Production " Production revenue,
Autonomous contribution,
Learning profitability

Fig. 1. Causes of learning and improvement.
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Note that it may be difficult for an outside ob-
server to know whether experimentation or experi-
ence is the principal driver of learning and thereby
of improved performance. Both accumulated ex-
periments and accumulated experience are corre-
lated with time and therefore with each other.
Hence, it is very difficult to use historical data to
disentangle their effects, especially since experi-
mentation is almost never carefully tracked. There-
fore, we view most of the “experience curve”
research, which purports to show that increased
production leads to learning, as irrelevant to the
question of what actually causes learning and how
learning should be managed. In Section 5.4, we
show what happens if the relative value of auton-
omous vs. induced learning is over-estimated.

If experimentation is a key driver of learning,
what limits the rate of experimentation? Pisano [4]
points to the scarcity of production capacity during
ramp-up. Many yield ramp-ups involve strenuous
debates about capacity allocation between process
engineers, who are measured by yield, and produc-
tion managers, who are measured by short-term
throughput. For example semiconductor com-
panies will restrict the number of “hot lots”, i.e.
expedited engineering trials, on the grounds that
such lots cause a disproportionate reduction in
production and increase in service times for normal
production [27]. The rate of experimentation is not
the only driver of learning, of course. For one thing,
the effectiveness of experimentation varies dramati-
cally depending on a variety of statistical and
non-statistical issues [28].

The contributions of this article are as follows.
First, we analyze the interaction between capacity
utilization and yields, a trade-off of fundamental
importance during production ramp-up. The
model is far more detailed than any of the previous
studies and thus provides a more micro-level analy-
sis of ramp-up. Second, using dynamic program-
ming techniques, we explicitly derive the cost and
value of experimentation. These results support
management in trading-off the short term oppor-
tunity cost of experimentation with the long-term
value of increased processing capability. Finally, we
explain a number of different ramp-up patterns that
can be observed in various industries and suggest
which ones are best under which circumstances.

3. Yield and output during ramp-up

Our model focuses on the production ramp-up
of high-tech products, such as electronics. We
define high-tech as meaning the company is on the
cutting edge of what is currently understood in
process engineering. High-tech products frequently
experience high but rapidly falling prices, and the
only opportunity to achieve higher than competi-
tive prices is early in the product lifecycle. This
forces management to bring the product to market
long before the manufacturing process is fully
understood. Production techniques start at low
stages of knowledge and yield losses are still
substantial.

During ramp-up, the goal is to raise both yield
and production rate (starts per hour) as rapidly
as possible. At each moment, there is a tradeoff
between the two, as the likelihood of a defect is an
increasing function of processing speed. There are
many causes of such tradeoffs. Consider the opera-
tion of a robotic watch assembly line as described
in [29]. Faster robot movement causes vibrations
which decrease the precision of the assembly and
thus increase the likelihood of a defect. Similar
speed—precision—defect interactions occur in many
automated placement and assembly operations.
Similar issues apply for assembly or test operations
performed by operators.

A second cause of speed vs. yield tradeoffs is
rework. If there is a fixed capacity available for
overall production, an increase in starts reduces the
amount of capacity that can be used for rework.
This reduces the number of rework loops that can
be spent per defective item and thus, ultimately,
final yields [6].

Third, because of process variability, allowing
more work in progress (WIP) between operations
increases total throughput. However, by Little’s
Law this raises average waiting time and thus the
time between the occurrence of problems at up-
stream operations, and their detection at down-
stream test or inspection points. Once problems are
detected, there is more bad WIP to be purged or
reworked. Problem solving may also take longer,
again lowering yields. Note that production varia-
bility is usually higher in ramp-ups, making this
tradeoff especially pointed.
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Fourth, consider the time spent for calibration,
inspection and maintenance of equipment. These
operations take time, which reduces production
rates. However, badly calibrated or maintained ma-
chines will be more likely to produce defective
parts.

Finally, many continuous and batch processes
involve the application of power over time, such as
baking, heat treating, and etching. The time-energy
profile of such processes can be widely varied by
adjusting temperatures, voltage, conveyor speed,
and other parameters. A process can be optimized
for raw speed by raising the power level and
decreasing the time. However, this speed maximiz-
ing setting is usually not the quality/yield optimal
setting, creating a tradeoff.

Each of these five explanations forces manage-
ment to trade off an increased level of raw through-
put against production yields. In the present article,
we abstract from this detailed causality and devel-
op a framework that is generalizable across various
industrial settings. We will first develop a (static)
model, analyzing the interaction between capacity
utilization, processing capability, and yields. This
model formalizes the starts vs. yields trade-off and
is applicable beyond situations of production
ramp-up. It will later allow us to show under what
circumstances during production ramp-up man-
agement should focus on starts or on yields (Sec-
tion 3.3). In Section 4, we use the same model as the
starting point for exploring the trade-off between
experiments and production.

3.1. Notation

Define time units such that it takes one unit of
time to produce one unit of output, if the operation
is executed at its maximum speed. In the presence
of a speed versus yield trade-off, it might be benefi-
cial to slow down the corresponding operation by
a certain time x to 1 + x units of time per unit of
output. Let I" be the time available for production
(e.g. machine hours) in a period. Given the defini-
tion of time units, this also corresponds to the
maximum achievable output (theoretical capacity)
of the process. For a fixed “level of care”, x, chosen
by management, the theoretical capacity is utilized
at a percentage u = 1/(1 + x).

Next, we have to describe the relationship
between the number of units started into the
process, I'/(x + 1), and yields. An increase in
the operation time x will reduce the likelihood of
a defect. Define y(x, «) as the yield level as a func-
tion of x. This yield level is jointly determined by
the operation time x and a parameter « > 0 which
measures processing capability. The higher the pro-
cessing capability o, the more the process can be
accelerated  without major yield losses:
0y(x, a)/0a > 0. We assume diminishing returns of
the extra operation time x, so that dy(x, @)/0x >0
and 0%y(x, ®)/0*x < 0. Output is then starts times
yields or y(x, «)(I'/(x + 1)).

Throughout the article, we assume that capacity
is a binding constraint. This is characteristic of
production ramp-ups since the product is still rela-
tively fresh and thus in strong demand, while out-
put is restricted as we will see. All units produced
can be sold at a selling price p, and the variable
cost per start (e.g. raw material) is ¢. Before we turn
to a dynamic version of the model, with learning
(increase in processing capability «) or falling
prices, we need to develop some simple insights
about the static trade-off between starts and yields.
Looking at one period in isolation, the operation
time x is chosen to maximize the contribution (sales
minus variable costs), which we can write as

r
x+1

r
TC(Z), o, X, C) = i)y(xa (X)— - C.
x+1

3.2. The starts versus yields trade-off

Good output is not necessarily a monotonic
increasing function in the number of starts. Starting
too many units can disturb the production process
so badly that not only yields fall, but even the net
number of good units produced decreases. Contri-
bution falls even more than good output since the
contribution measure n also takes the costs of
a start into account.

To simplify analysis, we now assume a specific
functional form for the relationship among yields,
processing capability, and operation time. Define
yields as y(x, ) = yo(1 — 1/ax), which — consistent
with our argument above - shows that the opera-
tion time x reduces the likelihood of a defect, but
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with diminishing returns. The parameter y, cap-
tures a base yield which is independent of the speed
of the operation and cannot be improved, such as
yield problems in operations that are downstream
to the bottleneck production line. Without loss of
generality, we discount the selling price by the base
yields, i.e. define p = py,. Good output per period
is now given by yo(1 — 1/ax)(I'/(x + 1)) and the per
period contribution is

(p, &, x,¢) =p{ 1 Ly I r c
P, %X, €} =P ax /x+1 x+17

Let x¥,; be the operation time that maximizes good
output. It is characterized by the balance between
the marginal gains from higher quality of one par-
ticular unit (increased likelihood that an item
started becomes good output) and the marginal
losses resulting from a lower overall production
rate. An additional unit started at a high level of
utilization is not only likely to be defective itself, it
also forces an increased processing speed on all
other items, making them more likely to be defec-
tive as well. Thus, an increase in utilization is con-
nected with a decrease in yields, and pushing
utilization beyond uf, = 1/(x%, + 1) actually de-
creases the overall output. At this point the effective
capacity decreases.

In order to calculate the contribution optimal
level of operation time x%,, we need to take the
costs per start into account, as well as the selling
price. The general optimal solution is characterized
by the balance between the marginal gains from
higher quality of one particular unit (increased like-
lihood that an item started can be sold) and the
marginal losses resulting from a slower overall pro-
duction. In terms of Fig. 2, this yields a downward
adjustment of utilization. Thus, the contribution
optimal solution has higher yields and lower utiliz-
ation than the output optimal solution. We assume
p/c > 1, ie. prices adjusted for downstream yield
losses are high enough to cover the variable cost of
production. Proposition 1 formalizes these ideas.

Proposition 1 (Static model). The contribution opti-
mal solution x¥, and the output optimal solution
x¥.. have the following properties:

1\\\\\

Not desirable

Output maximizing

Contribution
maximizing

Actual

= utilization
=
.S
s
N
S
Effective
utilization
0

0 Yields y 1

Fig. 2. Uitization versus yields (yo = 1).

® Both the output maximizing operation time and the
contribution maximizing operation time are strictly
positive, i.e. x%, >0 and x¥,,, > 0. As a result of
this u¥,., u¥. < 1, which corresponds to a deliber-
ate under-utilization of the capacity.

® The output maximizing operation time x%,, and the
corresponding contribution level 11}, are given by

14+ /1+«
o

-
xout -

H;fut = ﬂ(p:% x:l;utao)
1
=1Ip .
1+ Qa1+ /1 +a)

® The contribution maximizing operation time x%,,
the corresponding yield level y(x¥,,, «), and the
resulting contribution level I1%,,, are given by

(3.1)

xzi,m=1+ : 1+a_ca/p,

o1 — ¢/p)
J1 +oc—coc/p+c/p’ (32)
J1+a—cop+1

y::kom = y(x::koma OC) =
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Hfont = Tc(p& a, x;konhc)
(-7 1

=T .
P 2 /1 +a—cap+2+a—calp

o The contribution maximizing operation time
x¥ . decreases with the selling price p being in-
creased relative to cost c (p/c increases). For large
values of p/c the contribution optimal solution ap-
proaches the output optimal solution: X%, — x%,.

Proof. For easier readability, all the proofs are
given in the appendix.

The first part of Proposition 1 shows the differ-
ence between utilization and effective utilization: it
is both contribution and output optimal not to
operate the production line at its maximum speed.
Pushing utilization above u¥, is not beneficial, as
the yield losses more than offset the gains from
starting more units. At this point, the effective util-
ization of the plant is maximized.

Proposition 1 also shows how the optimal opera-
tion times x¥%, and x%, depend on the various
parameters, especially the processing capability o.
Yields and contribution can also be written as
functions of a. The last point in Proposition 1 states
that a decrease in selling price p will - everything
else equal - reduce the number of starts and in-
crease the resulting yields. Thus, with falling prices,
the production line needs to put an even higher
emphasis on quality.

Finally, it is interesting to observe the difference
between (3.1) and (3.2). For the special case where
the cost per start ¢ = 0, the two are identical. For
¢ > 0, utilization is adjusted downwards in favor
of yields. This confirms the intuition generated by
Fig. 2. Thus, a simple corollary of Proposition 1 is
that y¥,, < y% . and, for the corresponding utiliz-
ation levels, y¥,, < y¥..

3.3. Yield emphasis versus volume emphasis

Consider a sequence of periods similar to the one
described above. The only difference between each
period is the processing capability a: over time, the
organization learns more about its production pro-
cess, which corresponds to an increase in «. Note

that an increase in o allows for higher yields at the
same level of starts, or more starts at the same level
of yields. In this section, we are not explicit about
how the learning occurs. It might be driven by
volume, by an organizational learning effort, or by
time alone.

The result of these changes is a sequence of
models similar to the static model described above.
This constitutes the first step toward a “dynamic
ramp-up problem”. A natural question to ask in
this model is: What should the plant do with its
increased processing capabilities, produce more or
further increase yields (at the cost of output)? To
illustrate this trade-off, we extend Fig. 2 by showing
various levels of o. Each of the points on the addi-
tional lines corresponds to a pair of yield and
utilization level, ie. a set of (yf,uf), that is com-
puted using (3.2) for a changing level of processing
capability o. We define this path of utilization/yield
combination as the ramp-map. This is summarized
in Fig. 3. Let a yield-emphasizing ramp be a ramp
with high initial yields (relative to utilization, u*/y*
is small) where the learning is used to increase
utilization. Let a utilization-emphasizing ramp be
aramp with low initial yields (relative to utilization,
so u*/y* is large) with high initial utilization. With
increasing processing capability «, yields are
increased.

Utilization
emphasis
Yield
emphasis
2
=
g
s
N
5
0
0 Yields y 1

Fig. 3. Increasing processing capability: the ramp-map (y, = 1).
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Proposition 2 (Ramp-map). If learning occurs
exogenously to the model, i.e. the operation times
X; have no impact on any future o;, then the ramp-map
has the following properties:

® Long-run behavior: for o— oo, y* >y, and
u* — 1 and as a result u*/y* - 1/y,.

e For small o, u*/y* is an increasing function in p/c.
Large values of p/c favor a utilization emphasizing
ramp.

® For large wvalues of plc, u*/y* —udk,/yi.

= o/(1 + a)yo, which characterizes the maximum
possible utilization emphasis. The ramp-map above
this path is empty.

Proposition 2 is interesting in several ways. First,
we see that regardless of cost per start ¢ and selling
price p the long-run behavior for increasing levels
of processing capability « is always perfect yields
(y* = yo) and 100% utilization (u* — 1). This pro-
vides the end-point of the ramp-map. Second, the
ratio u*/y* helps us to further specify the location
of the start-point. For large ratios of price to cost
p/c, following Proposition 1, the only focus is on
output, thus u*/y* is maximized. At this point, the
ratio between utilization and yields is characterized
by o/(1 + ). For smaller values of p/c, there is an
extra focus on yields, which means the path
through the ramp-map shifts to the lower right.

To illustrate the implications for different indus-
trial processes, compare disk drive assembly and
semiconductor wafer production. For drives, the
costs of raw material are very close to the market
price of the finished good, which makes scrapping
a drive extremely expensive. Even if first-pass yields
are low, rework is used intensively to reach high
final yields. Rework corresponds to an extended
operations time, X,, in our model. Proposition
2 predicts a strong yield emphasis in the ramp-up,
which is consistent with empirical research in this
industry [6].

For semiconductors, the main cost driver is the
equipment, rather than the raw material. Thus, the
value of the finished wafer is many times its cost per
start and scrapping a defective wafer loses little in
terms of direct cost. Following Proposition 2, the
main focus is on output and the ramp-up is charac-
terized by extremely low initial yields. Various

studies in the semiconductor industry show that
production can sometimes continue at low yields
for a prolonged period, if competition is low and
prices high (e.g. [117).

4. Learning in ramp-up

In this section, we extend our analysis presented
in Section 3 by explicitly modeling the sources of
learning. We do this by adding a second managerial
decision variable, learning efforts, which will come
in the form of controlled experiments. The results of
Proposition 1 allow us to replace the decision vari-
able “operations time”, x,, with its contribution
optimal level x¥, and thereby to focus our
discussion purely on learning efforts.

The benefit of learning efforts lies in an increased
knowledge about the production process, which is
captured in the processing capability parameter
o in the model. However, learning also has draw-
backs. First, experiments consume capacity which
could otherwise be used for regular production (e.g.
setups of experiments, experimental output might
not be salable, disruption from expediting experi-
mental “hot lots”). Second, experiments are a devi-
ation from what is currently believed to be the
optimal process control. This lowers yields (e.g. in
case of trying out a new recipe).

This creates a dual role of the production pro-
cess: it not only produces salable output, it also
provides the environment for conducting experi-
ments [28]. Looking at the per period contribution
IT% . in (3.2), we see that the overall contribution is
proportional to the available capacity I'. So, spend-
ing more machine time for experimentation creates
an opportunity cost of lost regular production.

The difficulty of choosing between these conflict-
ing goals has also been observed by Pisano [4].
Based on his study of process development in the
biotechnology industry, Pisano reports: “Setting
aside capacity and time for development runs,
training operators in experimental design so that
they will be better able to work with R&D Scien-
tists, and implementing appropriate controls and
documentation to enable experimentation without
threatening the quality of commercial production
are some of the prerequisites for making plants
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Fig. 4. Effects of experimentation.

producers of knowledge as well as of products”.
These conflicting goals and their interaction are
illustrated in Fig. 4.

4.1. A mathematical model

In order to formalize the tradeoff between cur-
rent production and learning, we define z as the
fraction of the overall processing capacity I" that is
used for experiments. Together with the operations
time (level of care) x, the experimentation time
represents our second managerial decision variable.
The overall output of the production process is
then

r
(1 —2)y(x, “);TI’

where 0 <z < 1.

Process improvement corresponds to an in-
creased value of processing capability «. Consider
the case where we improve the process by increas-
ing the processing capability from o4 to a higher
level oy i= A0oig > Ooia- The magnitude of the
improvement A from one period to the next will
depend on the two learning mechanisms, learning
by doing and learning by experimentation. Similar
to a production function, we assume

A= ﬂiﬁz,

where f8; captures the relative importance of learn-
ing by experimentation to learning by doing and
> the learning rate of learning by doing in itself.?
In the absence of experimentation (z = 0), process
improvement is solely a result of learning by doing
(4 = B). Learning by doing is thus driven by the
cumulative time (e.g. machine hours) the produc-
tion line has been processing the new product.
f1 measures how much additional progress would
occur if the line were dedicated to experiments for
the whole period.

We now extend our static model of Section 3 to
a T-period dynamic model. The previously intro-
duced variables o, x and p for processing capability,
operations time, and price are now indexed by time,
1e. o, x, and p,. Over the periods, prices fall at
a rate of d, per period, and future cash flows (rev-
enues and cost) are discounted with a factor 4. As
this paper focuses on the dynamics inside the plant,
we view this price fall as exogenous to our model.

In every period, management needs to decide on
both speed of the line (in form of the operations
time x,) and the fraction of capacity used for experi-

2This formulation of learning is equivalent to assuming
A =93y} 7% where y, is defined as the absolute importance of
learning by experimentation and 7, as the absolute importance
of learning by doing.
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mentation z;. Whereas the costs of an experiment
are additive over time (the first 10% of production
capacity has the same opportunity cost as the last
10%), the value of an experiment typically is not.
For example, spending 20% of the capacity for
experimentation in one period will yield a smaller
increase in processing capability o, than spending
10% in the current period and 10% in the sub-
sequent period.

There are several reasons for diminishing returns
to experimentation within one period. First, experi-
mentation is normally done in cycles, rather than in
one single batch [16]. It is more effective to wait for
the results of one experiment before formulating
ideas which become the basis of the next cycle [30].
Second, although capacity is a key input for experi-
mentation, there are others, specifically engineering
time. Third, conducting too many experiments at
the same time increases the noise in the process,
which makes it harder to learn. Thus, process im-
provement returns will be reduced, if management
decides to “jam” all experimentation efforts in one
or few periods.

To capture these diminishing returns to experi-
mentation, we adjust the learning rate of experi-
mentation f; by multiplying it with a factor &3,
which is decreasing in the amount of experimenta-
tion, z, carried out in that period (@ < 1). This
reduces the effective learning rate of experimenta-
tion to f,©% and therefore results in an overall
process improvement of

hi= Ba[By O°F = B 67 .. (4.1)

For small values of experimentation time z, the
factor @7 is close to one, i.e. for the first units of
experimentation, the marginal gains are close to
the ideal learning rate f;. In the extreme case of
z =1, only @ percent of the ideal learning rate is
achieved. .

For example, we can write o, = oy 7' > O and
oy = 0, f2 B, 07 = oy B3 T B, 07 T, We can see
immediately that the effect of ® is minimized if the
experiments are evenly spread over the periods.
Therefore, if cost and value of the experiments were
constant over time, it would be optimal to have
zy = z,. However, in the presence of changing cost
and value, the optimal solution has to be chosen
based on the overall optimization problem.

4.2. Dynamic programming formulation

As the operation time x, has no effect on any
future processing capabilities o, 4;, i = 1,..., T — ¢,
we can decompose the overall optimization prob-
lem. For every period, we choose the optimal op-
eration time x%,, given current capability o;, which
is given by Proposition 1. Anticipating that we will
choose this optimal operation time, we then are left
with finding the optimal learning effort z, for every
period. This requires the analysis of a dynamic
program with the processing capability o, as the
state and the experimentation level z, as the deci-
sion variables,

Tz, ,...,zr) = Max Zéf{l(l — z)m (), (4.2)
where o, 1s connected to o, 4,2, ; and x,_; by the
improvement rate given in (4.1) and the immediate
pay-offs  per  period are  defined as
(o) = n(S85 ' p, oy, xF, ). We define

Fi(et)) = Max {(1 — z)m () + 3aF+1 (5 0% B2)},
) 4.3)
Fr(oup) = np(ar) + Terminal value(o).

For the last period T, there is no direct value of
experimentation in our model. However, higher
processing capability beyond period T typically
has some value, e.g. in lower unit costs for the
residual product lifecycle or in increased knowledge
for future product generations. For a general
period ¢, we can see from (4.3) that the first part of
F,(«,) 1s decreasing linearly in the experimentation
time z,. As we will show more formally below,
the returns to experimentations are marginally
decreasing, which makes (4.3) a sum of two concave
functions. Thus, the optimal solutions z%,...,z%
are uniquely identified and can be computed by
backward induction.

4.3. Costs of an experiment

In order to understand how much of its scarce
production capacity the organization should invest
in experimentation, we need to understand the cost
and benefit of one unit of experimentation time. At
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first sight, the analysis looks quite simple: costs of
experimentation are given by the opportunity costs
of not producing and the benefits of experimenta-
tion are given by the increased process knowledge
that we have already formalized in (3.2).

Although this intuition is correct, the actual
analysis is more complicated, as both opportunity
cost and value of increased process knowledge
are functions of time and current processing
capability. Time is important as it relates to
selling price and thus to the opportunity cost of
not producing. The current knowledge is important
as it influences how much is still to be learned
from an experiment as well as the opportunity
cost. Having the line not produce is cheaper at
a low level of knowledge than at a high level of
knowledge.

Let k(t, o, z,) = Max{z,m,(e;), 0} denote the cost
of experimentation if a fraction z, of capacity is
used for experimentation at time ¢ and state «,. We
can then prove the following proposition.

Proposition 3a (Cost of an experiment). The cost
k(t, o, z,) of doing z, units of experimentation in time
t and state o, is an increasing function of the process-
ing capability a,, and a decreasing function of time t.

Proposition 3a means that the cost of experi-
mentation can, over the periods 1,..., T, go either
up or down. Increasing levels of processing capabil-
ity «, bring the opportunity cost up, as at a high
o the production line can produce more and at
higher yields. However, falling prices, which also
drive the opportunity cost, are pushing the oppor-
tunity cost down. As over time the organization
increases its processing capability, «, and ¢t move
together, allowing the cost of experimentation to go
either up or down.

Before we turn to the value of an experiment, we
compute the costs of increasing the processing ca-
pability from o, to Ao, ;. This extends Proposition
3a which derived the costs of experimentation per
unit of experimentation time.

Proposition 3b (Doubling «). Increasing the pro-
cessing capability by a factor A carries the following
costs:

® the amount of experimentation required as a func-
tion of 1 is given by

()= — Joghy (i1 - logg:
2 logh 4 logh®  (44)

® the corresponding cost is given by k(t, oy, z(1)).

We can see that although the required amount of
experimentation to increase the processing capabil-
ity from a to A« is independent of time, the asso-
ciated costs k(t,a,, z(1)) are not. This is a result of
Proposition 3a. Eq. (4.4) shows the relationship
between experimentation time and the learning
parameters f34, 5, and 6. These parameters provide
an upper bound of how much improvement can be
achieved within one period. We can see that
a doubling of the processing capability « becomes
more and more expensive as o increases, and has to
be justified by large benefits. These benefits are now
analyzed in greater detail.

4.4. Value of an experiment

The value of an experiment depends on three
factors: how far the product has advanced in the
lifecycle (the period £), the current processing capa-
bility «, and the level of experimentation z. Similar
to the cost of an experiment, both time ¢ and pro-
cessing capability o (the two state variables of the
DP) have an influence on the value. The value of
a unit of experimentation depends on how much
additional experimentation is conducted in that
particular period. We define v(t, «,,z,) as the value
of doing z, units of experimentation in time t and
state o,.

We can express v(t, a,, z,) using the recursive def-
inition of F,(x,) in (4.3):

Wt, 0, 2) = 0a[Fys 1 (307 B) — Fyy 1 (o, 82)].
4.5)

Doing z, units of experimentation will bring the
processing capability at period t + 1 from o, to
o, fFO7B,. The net present value of this is given by
F,y1(,f70%B,). If we decide to not invest into
process improvement, the new state will be «,f,
with the associated net present value of F, . {(x,8,).
Therefore, we define the value of an experiment as
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the net present value difference between two scen-
arios, corresponding to two different a-trajectories,
starting at period ¢ + 1. The first scenario is based
on optimal experimentation in period ¢, the second
scenario forces z, = 0. Note that the two scenarios
are likely to have different experimentation policies
beyond period ¢ + 1.

Proposition 4 (Value of experiment). The value of
increasing the processing capability from o to Ax goes
down in o (diminishing physical returns) as well as
int.

Proposition 4 shows the value of an experiment
falls over time. There are three reasons for this.
First, the residual lifetime of the product, to which
the new knowledge might be applied, is shrinking.
Second, the value of an experiment falls as prices
fall. This makes early knowledge more valuable
than late knowledge.

Third, in addition to those two effects, that are
purely driven by calendar time, the value of an
experiment falls as « increases. To illustrate this,
compare two situations. In the first situation, the
processing capability « is small and yield losses are
still high. Increasing « at this point has substantial
leverage, as there are still plenty of opportunities
for improvement. In the second situation, the pro-
cess is close to being perfect. Both utilization, u, and
yields, y, are close to one, so an improvement in ¢,
even if of substantial size, will not have much im-
pact on the bottom line.

This is similar to the argument of Zangwill and
Kantor [16]. Instead of looking at process yields,
they make waste (defined as 1-yields) their key
variable. The authors argue that the effort required
for a proportional waste reduction is constant. For
example, getting yields from 50 to 75% and getting
them from 75 to 87% both correspond to a halving
of waste, and require the same effort, but the first
improvement is more valuable then the second.
This is consistent with our model, if we define waste
as 1/ax , and Proposition 3b, which requires a con-
stant effort for each proportional change in o.. Thus,
there exists a constant a-improvement (in form of
a multiplier) for each halving of waste.

We now turn to a series of numerical examples,
which illustrate how qualitatively different optimal

behavior can arise from different market, technolo-
gical, and learning parameters.

5. Numerical illustrations

We solve a number of numerical examples in this
section. They shed light on the structure of the
optimal solution to the general profit maximizing
problem as stated in (4.2). Consider an example of
a low price to cost ratio process, such as disk drive
assembly. The initial price is p = $3/unit, prices fall
at 6, = 0.95 per period (month), the discount factor
is 54 =0.98. We assume cost per start to be
¢ = $1/unit and consider only the final assembly, so
there are no substantial yield losses further down-
stream (y, = 1). Let the initial processing capability
be a; = 1 and the learning rates be f; = 2.80 and
B, =101 for learning by experimentation and
learning by doing respectively. The overall capacity
available for production and experimentation is
I' = 1000 units per month, and the lifecycle is
T = 12 months.

5.1. High experimentation capability

To begin with, consider the case where the ex-
perimentation capability is high, i.e. § = 1. Engin-
eers can conduct a large number of experiments
and still get the maximum learning out of each of
them. We can compute the cost of an experiment in
the first period using Proposition 3a. With no ex-
perimentation, the optimal first period profit is
n, = 25.4. Thus, each percent of experimentation
time creates an  opportunity cost  of
k(1, oy, 0.01) = 0.254. The value of experimenta-
tion is driven by the future periods’ increased
capability.

Fig. 5 plots the cost and value of experimentation
for this specific case. Over the first four periods, the
value of complete experimentation exceeds its cost
indicating that the full period should be spent on
experimentation. This changes from period 5 on-
wards. As the processing capability o5 is substan-
tially higher than earlier, the opportunity cost goes
up to k(5, as, 0.01) = 1.04 per percentage experi-
mentation time. At the same time, the value of the
experiment has decreased for the reasons discussed
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Fig. 5. Cost and value (in dollars) of experimentation.

in connection with Proposition 4. First, there are
fewer periods left to which the additional know-
ledge can be applied. Second, because of the
physical diminishing returns, a further increase in
processing capability has less value.

As a result, no time is spent on experimentation
in the fourth period and beyond. Fig. 5 also shows
that experiments are inexpensive in the beginning
and in the end of the product lifecycle, but most
costly in the middle.

Fig. 6 summarizes the optimal solution. The four
bars indicate the optimal experimentation policy:
full experimentation at the start, then none.
Fig. 6 also shows yields, utilization, and per period
contribution. We see that the initial focus of the
plant is on yields (start at 72%) rather than utiliz-
ation (start at 26%).% This yield emphasizing ramp
is a result of the relatively small price to cost ratio
(initially 3:1).

5.2. Low experimentation capability

Next, consider the case of lower experimentation
capability, e.g. 6 = 0.5. The cost per unit of experi-
mentation i1s the same in the first period, but its
value goes down drastically. Spending z; = 1 units
on experimentation now only results in a second

3 Note that these values are “not realized”, as the complete
first periods are dedicated to experimentation.
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Fig. 6. Optimal solution for 6 =1; the bars indicate the
optimal z,.

period capability of &, = 1.46. This is driven by the
sub-additivity argument. The lower o, also
translates into a lower second period opportunity
cost of the coming periods (k(2, «,, 0.01) = 0.31,
k(3, a3, 0.01) = 0.36, k(4, oy, 0.01) = 0.40). The de-
crease in k(2, o, 0.01) together with the reduced
first period value of experimentation creates an
incentive to move some experiments from period
one to period two.

Fig. 7 shows the optimal solution for the case
0 = 0.5. Again, the emphasis of the ramp is on
yields, rather than utilization. As opposed to the
previous example (and Fig. 6), production starts in
the first period, so the plant is actually producing at
the initial yields of 72%. Fig. 7 demonstrates the
harsh economic reality that most companies face
during ramp-up. Given its low learning capability
captured in 6 = 3, it is not until period 9 (75% into
the lifecycle) that the plant reaches its maximum
contribution. However, rapidly falling prices
quickly erode even the remaining 25% of the
lifecycle, so that the time that can be used to pay
back development expenses is extremely short.

These first two examples have illustrated the
importance of the sub-additivity parameter 6. The
first example is similar to a production ramp-up on
a pilot line. The market introduction of the product
is delayed (despite falling prices) and all the capa-
city is used for process engineering. In the second
example, the product is introduced to the market
earlier and process engineering is spread out over
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several periods. Although this approach allows for
some early profits and high prices, it also forces
management to run the production line at low
yields and utilization. As expected, the overall
profit in the first example (m = 522.5) exceeds
profits in the second one (z = 296.3).

5.3. Rapidly falling prices

Next, consider a situation of rapidly falling pri-
ces. Suppose R&D has come up with a radical new
product that is the first of its kind. For the first
period, we can charge a monopoly price of p = 5.
Afterwards, competitors enter the market and pri-
ces drop sharply to p = 3, and from then onwards
fall at 8, = 0.95. All other parameters are identical
to the second example above. This example is inter-
esting as it demonstrates that the capacity dedi-
cated to experimentation should not necessarily
decrease over time. The cost of experimentation
in the optimal solution are given by
k(1, oy, 0.01) =058 and Kk(2, oy, 0.01) = 0.28.
Compared to the second period, prices are high in
the first period, which drives up the opportunity
cost of not producing. The initial processing capa-
bility o; = 1 is sufficiently high to create profits.
This picture changes in the second period. As little
time was spent on experimentation in the first peri-
od, o, = 1.39, which is not a substantial increase.
However, given the drastic fall in prices, manage-
ment now faces a situation where the selling price is

substantially lower than before. This price level
together with the current processing capability
makes experimentation now less expensive, yield-
ing a second period experimentation of z, = 0.57.
From then onwards, the cost of experimentation
follows the path we have seen in the first two cases:
an initial increase because of the increased capabil-
ity and a long-term decrease because of falling
prices. The optimal level of z, to z;, is decreasing
in time.

Taking the above examples together with Prop-
ositions 3 and 4, we can postulate three types of
solution:

1. Virtual pilot line: The introduction of the prod-
uct is delayed and all available capacity is used for
experimentation (zf =1 for t =1,...,n < T). This
approach is optimal if (a) prices are falling at
a modest rate (6, is low), (b) high experimentation
capability (weak sub-additivity: 0 is close to 1).

2. Mix of experiments and production: Experi-
ments are spread out over several periods, but more
and more of the production capacity is used for
regular production (z, > z;+, > 0). This approach
is optimal for low experimentation capability.

3. Delayed experimentation: The time spent for
experimentation is larger in the second period than
in the first period (z, > z; > 0). This approach is
optimal if prices fall faster in the beginning than
they do later.

5.4. Knowing the sources of learning

The above examples assume that management is
fully aware of the true sources of learning. This
includes both the relative magnitude between
B, and B, and their absolute magnitude. Following
our discussion in Section 2, this is frequently not
the case. The importance of “learning by experi-
ence” is frequently overestimated compared to the
importance of controlled experiments. For
example, Lapré et al. [14] study learning projects in
a mature wire drawing plant, and found that all
non-experimentation based improvement projects,
which accounted for the majority of projects, had
no effect or even a negative effect on waste.
Although the environment was different from
a high-tech ramp-up, this shows that management
is frequently unaware of the “true” sources of
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learning and specifically underestimates the im-
portance of learning by experimentation.

Consider a situation similar to the example of
Section 5.1. The initial processing capability is
o; =1 and the learning rates are f, = 2.8 and

, = 1.01. However, these underlying parameters
are not known by managers, who have estimates of
the learning rates in form of f;, i = 1,2. Let B, =2
and f8, = 1.5, which corresponds to an overestima-
tion of experience versus experimentation. Based
on this assumption, management chooses the ex-
perimentation times to maximize lifecycle contribu-
tion according to (4.2). This yields lower than
optimal z; and a total contribution of = = 235. If
management had followed the true optimal policy
the discounted contribution would have been
7 = 296. In other words, 20% of the potential con-
tribution is lost because of an incorrect estimate of
the learning rate.

Next, consider the reverse case where the real
learning rate is f; = 2.8, however engineering
over-estimates the importance of experimentation,
with B; = 5. As a result of this, more time is allo-
cated to experimentation than optimal. Instead of
getting a contribution of = = 296, the product now
only reaches contributions of = = 267.

Two remarks clarify these examples. First, in
both of them management was aware that experi-
mentation yields higher improvement rates than
pure volume, but the magnitude of these rates were
misestimated. If management thinks the only
source of learning is regular production (“learning
by doing”), no time will be spent on experimenta-
tion (z; = 0). The resulting loss of contribution is
even larger than in the two examples.

Second, a deviation of 10-20% in 7 seems to be
relatively small, especially if compared to how far
the j; estimates were from the true values. How-
ever, this is looking at contribution, rather than
profits. In presence of large fixed costs, a 10-20%
contribution change will make the difference be-
tween bottom line profits and losses.

6. Conclusion, implications and future research

We have presented an analytical model of pro-
duction ramp-up, which combines a static trade-off

between yields and utilization with a dynamic
trade-off of learning and process improvement. In
today’s rapidly changing environments, cutting de-
velopment times (time-to-market) in itself is not
sufficient. Another key to achieving high profit is
a rapid production ramp-up of a new product. This
includes quickly achieving both high yields and
a high level of utilization.

Our findings have a number of managerial im-
plications. Most basic is the need for managers to
accept and deal with the inherent paradox of learn-
ing during production ramp-up. At the beginning
of a ramp when prices are at their highest, and
yields and output at their lowest, it is nonetheless
still the moment to further reduce output in order
to run engineering trials and work on yield and
speed improvements. This paradox often creates, in
our experience, strong pressures to take shortcuts
in learning, such as experiments with overly small
sample sizes relative to the process noise level, or
not running validation trials before implementing
process changes. While this keeps up-time higher in
the short run, it often leads to problems which
reduce performance for the rest of the ramp-up
period and beyond. We deal with this paradox by
explicitly calculating the cost and value of experi-
mentation as functions of time and processing ca-
pability. Figs. 6 and 7 show the patterns that can
result from optimal behavior.

Second, we show the importance of understand-
ing the sources of learning. It is incorrect to treat
learning as an exogenous process beyond manage-
rial control. Rather, there are three key high-level
inputs which should be explicitly allocated and
managed. These are normal production experience,
capacity withdrawn from production for experi-
ments of many kinds, and engineering time. Only
the first of these happens automatically. Only en-
gineering time (which we modeled as being lumped
together with experimentation) appears explicitly
in a cost accounting system. But the dollar costs of
experimentation time, although not captured in
accounting systems, can be a large investment as
well, and are integral to success.

Our analysis in Section 3 provides a first look at
the important trade-off between yields and produc-
tion speed. With different product economics, and
at different times in ramp-up, the optimal levels of
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care and rework shift. It also serves as a strong
reminder that in yield driven industries there is
a large difference between utilization and effective
utilization. Finally, this research illustrates the im-
portance of time-to-volume compared with the still
dominant paradigm of time-to-market. We show
how different situations require different decisions
during the ramp-up period.

We have kept the model as simple as possible in
order to focus on structural results. This approach
clearly has limitations. Our assumptions that the
processing capability can be represented as a single
number, as well as the assumptions concerning the
functional forms of learning rates and sub-additiv-
ity are strong simplification of real ramp-up
situations. Refinements of the model provide inter-
esting avenues for future research. First, some of
the assumptions could be relaxed. For example,
prices and competitive behavior could be explicitly
modeled. Spence [31] provided an influential
analysis of the effect of learning on strategic
competition. He modeled a firm investing in learn-
ing early, in order to deter entry by potential
competitors. In his model, learning was an inherent
by-product of production experience, so that the
form of “investment” was to produce more. The
firm uses low prices both to encourage demand,
and to serve as a signal to competitors that it has
made an investment. This leads to the prescription
to “price ahead of the learning curve”. In our
model, firms can also invest in learning, but in the
form of deliberate learning through more time for
experiments (and less production). A combination
of both models seems promising.

Second, we see a strong need for more empirical
research on this topic. Detailed case studies
on the ramp-up period will help to reveal addi-
tional variables [32]. Such case studies could try to
develop a managerial check-list of items that need
to be addressed before or during the ramp-up.
Another empirical research opportunity lies in
a detailed econometric analysis of yield and utiliz-
ation curves over time, which tries to identify
the most effective variables that help increase the
effective capacity.

Finally, the issues of production ramp-up should
be linked to the existing fields of product develop-
ment and learning in manufacturing. Although in

the present paper we try to explicitly include find-
ings from the manufacturing learning literature, we
do not sufficiently include aspects of product devel-
opment. What happens during product develop-
ment will have a strong impact on the initial
processing capability as well as on the speed of
ramp-up. Thus, linking the quality of the ramp-
up to events during the product development
process provides a third interesting avenue for
future research.

Appendix. Proofs of Propositions 1-5

Proof of Proposition 1. We need to show that
there exists both a unique output maximizing
care time x¥, and a unique contribution maximiz-
ing care time x%,,,. To do this, we use s = I'/(1 + x)
and show that there exists a uniquely defined
optimal levels of starts. Given the 1:1 trans-
formation between s and x, this also uniquely
characterizes the optimal care levels x¥%, and
x¥ .. Output as a function of starts is given by
q(s) = s(1 — (1/2)(1/Tfs = 1).  As  %q(s)/d*s =
— 2 —4s/ul" —s)) — 252 /(" — 5)*) <0, q(s) s
concave in s. The contribution maximizing prob-
lem can be restated as pg(s) — ¢s > Max, which
provides a linear combination of concave functions,
and thus itself is concave.

Thus, both x¥,, and x¥,, can be obtained from
first-order conditions and the corresponding yield
and contribution levels result from substituting
x¥,. and x¥%, into the corresponding definitions.
Eq. (3.2) converges to (3.1) for large p (¢/p —0). O

Proof of Proposition 2. As u* =1/(1 + x), with
o — 00, we can see from (3.2) that x — 0 and thus
u* — 1. The same holds for yields y*.

The ratio u*/y* indicates to what extent
the process focuses on output or yields. From
Proposition 1, we can determine

u* (p—o
Pl
y p

PN ETErT
[\/1+o<—coc/p+l+oc—cac/p][\/1 —|~oc—coc/p+c/p].
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All of the proposed statements can be derived from
the ratio u*/y*. O

Proof of Proposition 3. Proof(3a): We can see from
Proposition 1 that 7,(,) is increasing with o, as the
operation time (3.2) decreases with o (thus a high
o allows for more starts) and the corresponding
yield level also increases with o.

To show that costs are decreasing with p,, define

m = ./p* + p*a — po > 0 and consider

aZH::kont
azp = a(p - 1)

pmo 4 2pm — am + 2p* + 2p*a — po + 2m + 2p — o
(po + 2p — o + 2m)’m

s

where, without loss of generality, ¢=1. As
p>c =1, the second derivative is positive (i.e.
costs are falling). This is, holding o, constant, the
only parameter changing with time.

Proof (3b): Eq. (44) can be derived by solving
Ae=afiO@7 B, for z. After taking logarithms,
we obtain a quadratic expression in z, yielding
two solutions. As 4 has to be smaller than
B1f,0, which is the maximum achievable
improvement (z = 1), the optimal solution is given
by 4.4). O

Proof of Proposition 4. To establish the diminish-
ing returns we define m as above and compute

0PIl 1 2
T - Y
4p* + 3p*a — 6pa — 4p + 300 + 4pm — 4m
(pot + 2p — o + 2m)*(p + pox — )ym

where m is defined as above. As p > 1, the second
derivative is < 0 which shows that IT%, grows
slower for large values of o.

First, prices are falling over time, and second, the
residual lifetime to which the new knowledge can
be applied is shrinking. Each of the two arguments
is sufficient in itself to make the value of an im-
provement go down in t. [J
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