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We consider the allocation of capacity in a system in which rental equipment is accessed by two classes of customers.
We formulate the problem as a continuous-time analogue of the one-shot allocation problems found in the more tradi-
tional literature on revenue management, and we analyze a queueing control model that approximates its dynamics. Our
investigation yields three sets of results.

First, we use dynamic programming to characterize properties of optimal capacity allocation policies. We identify
conditions under which “complete sharing”—in which both classes of customers have unlimited access to the rental fleet—is
optimal.

Next, we develop a computationally efficient “aggregate threshold” heuristic that is based on a fluid approximation of
the original stochastic model. We obtain closed-form expressions for the heuristic’s control parameters and show that the
heuristic performs well in numerical experiments. The closed-form expressions also show that, in the context of the fluid
approximation, revenues are concave and increasing in the fleet size.

Finally, we consider the effect of the ability to allocate capacity on optimal fleet size. We show that the optimal fleet
size under allocation policies may be lower, the same as, or higher than that under complete sharing. As capacity costs
increase, allocation policies allow for larger relative fleet sizes. Numerical results show that, even in cases in which dollar
profits under complete sharing may be close to those under allocation policies, the capacity reductions enabled by allocation
schemes can help to lift profit margins significantly.
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1. Introduction
Rental businesses found in many sectors of the economy
share some fundamental attributes. The rental company
invests in equipment for which there is a potential demand,
and a stream of customers patronizes the company, renting
its equipment. After each rental, the equipment is returned
to the company, and rental durations are typically signifi-
cantly shorter than the life of the equipment, so that each
unit may be used repeatedly.

For those who manage rental businesses, important man-
agerial decisions focus on matching rental demand with
the equipment supply. These decisions create a hierarchy
of managerial controls at the company’s disposal. Longer-
term capital-investment decisions set the company’s overall
level of rental capacity and attempt to capture as much
demand for rental services as is (marginally) profitable.
While they provide for long-term matching between sup-
ply and demand, fleet-sizing decisions may not be used to
counterbalance short-term supply and demand mismatches.
On a tactical time scale, capacity allocation decisions may
be needed to determine which customers are served when
rental capacity becomes scarce.

In this paper, we consider a simple stationary model
of a rental problem in which capacity must be rationed
among two classes of arriving customers. We address both
the lower-level allocation problem and the higher-level
capacity-sizing problems, with an emphasis on the former.

Our approach to the tactical allocation problem follows
in the spirit of early formulations of seat-allocation prob-
lems in the airline yield-management literature. (For exam-
ple, see Littlewood 1972, Alstrup et al. 1986, and Belobaba
1989.) When should arriving customers of each of the
classes be allowed to rent equipment, and when would they
be “closed out?”

Two common assumptions made in traditional revenue
management models make them inadequate for our pur-
poses, however: They assume that there exists a finite hori-
zon over which units of capacity can be sold and that each
unit of capacity can be used only once. For example, in
aviation there are c seats on a flight, and once they are sold
or the plane takes off they are not available for sale.

While hotel problems could (and perhaps should) in prin-
ciple be formulated as rental problems, most academic lit-
erature only addresses the problem of allocating the rooms
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available on a single night. (For example, see Rothstein
1974, Ladany 1977, Williams 1977, Liberman and Yechiali
1978, Bitran and Gilbert 1996.) An exception is the appli-
cation of linear-programming (LP)-based “bid price” con-
trols to hotel stays. (See Williamson 1992, Weatherford
1995.) In this case, multiple nights are considered, but the
problem is modeled as deterministic.

In rental businesses, however, the problem is most natu-
rally treated as a problem in dynamic and stochastic con-
trol. An arriving customer rents a unit, which becomes
unavailable for the length of the person’s rental. When the
rental period ends, the unit becomes available again. Over
any short period of time, the numbers of arriving and dep-
arting customers may be uncertain, and managers must dev-
elop effective policies for controlling the rental of system
capacity.

We view the allocation of rental capacity as a contin-
uous-time infinite-horizon problem in which arrivals of cus-
tomers and durations of rentals are both uncertain. We
formulate this problem as one of admission control to a
multiple-server loss system. We assume that, if admitted
into service, a customer pays a daily rental fee that depends
on the class to which she belongs. If the rental request
is rejected, then a class-dependent, lump-sum penalty is
incurred. We show that this capacity allocation problem
can be reduced to a special case of the stochastic knapsack
problem introduced in the telecommunications literature
(Ross and Tsang 1989), one in which arriving “objects”
(demands) are all of size one.

We note that this formulation does not capture the use
of prior information on rental duration. In some contexts,
such as truck-trailer leasing (the application that originally
motivated this paper) and storage-locker rentals, this infor-
mation may not be available. In others, such as hotel sys-
tems, customer-stated projections of expected duration are
readily available and can be of great value in improving
the effectiveness of capacity allocation decisions. Thus, our
approach has important limits.

Nevertheless, the simplicity of our approach allows us to
make a number of contributions:

1. We demonstrate that the allocation problem with
lump-sum penalties can be reduced to one with no penalties
by appropriately adjusting the values of the rental fees. The
adjustment factors are proportional to the penalty values
and the service rates.

2. We characterize two conditions under which the
“complete-sharing” (CS) policy that is often used in prac-
tice is optimal: The first is in the “off-season,” when the
overall demand for service is low relative to capacity; the
second is in the “peak season” of high demand, given that
different customer classes are sufficiently similar.

3. We analyze a fluid approximation to the original sys-
tem, and we derive closed-form expressions that charac-
terize the controls and the performance obtained when
allocating capacity using an “aggregate threshold” (AT)
policy. These expressions allow us to efficiently calculate

admission thresholds that appear to perform well in the
original stochastic model.

4. Closed-form expressions for the fluid model also
allow us to demonstrate the concavity of the fluid model’s
revenues with respect to the fleet size when the aggregate
threshold policy is used. This concavity is the essential
property required for the efficient solution of the related,
long-term problem of capacity sizing.

5. We show that, in the presence of capacity rationing,
the optimal fleet size can be either higher or lower than that
obtained when no rationing is employed. The relationship
between the two fleet sizes varies systematically with the
cost of capacity.

6. We present numerical experiments that highlight the
potential benefit of jointly optimizing fleet size and tactical
controls. In particular, there appear to be cases in which the
suboptimal use of complete sharing results in near-optimal
dollar profits. Even in these cases, however, the return on
investment in capacity suffers significantly.

More broadly, these numerical results complement our
characterization of sufficient conditions for the optimality
of CS policies. CS policies maximize physical measures of
system utilization. When complete sharing is optimal, this
physical measure of system utilization is a good proxy for
economic utilization. When complete sharing is not opti-
mal, however, its use can degrade profit margins and, by
extension, economic measures of resource efficiency, such
as return on assets. In this case, physical and economic
measures of efficiency do not coincide.

Thus, within the context of the stationary problem devel-
oped in this paper, we are able to characterize how the
use of tactical controls affects longer-term decisions regard-
ing fleet size, as well as longer-term and economic effi-
ciency. While a complete analysis of the problem, which
should account for seasonal changes in demand patterns, is
beyond the scope of this paper, our current results represent
a promising first step.

Finally, we note that our analysis and results complement
that of two recent papers that have independently consid-
ered the stochastic knapsack problem. Our analysis parallels
that of Altman et al. (2001), which uses dynamic program-
ming techniques to study optimal capacity allocation rules
and develops and solves (numerically) a fluid approxima-
tion to the problem. Our special problem structure, however,
allows us to more fully characterize properties of optimal
and heuristic admission controls. We are able to develop
a number of additional useful structural results concern-
ing optimal policies and to develop precise, closed-form
characterizations in the context of fluid control. Örmeci
et al. (2001) also uses dynamic programming techniques to
develop similar characterizations of structural properties of
the optimal policy. It does not, however, consider heuristic
controls. Neither of these papers considers how the use of
tactical controls affects longer-term fleet-sizing decisions.

The remainder of this paper is organized as follows.
In the next section, we formulate and analyze the capac-
ity allocation problem and demonstrate how the problem
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with lump-sum penalties can be reduced to one without
penalties. We also discuss properties of optimal capacity
allocation policies and establish conditions for the opti-
mality of the CS policy. In §3, we introduce a heuristic
AT policy based on a fluid-model version of our sys-
tem, and we compare the performance of this heuristic
to that of the optimal policy. In §4, we investigate the
interaction between capacity sizing and capacity alloca-
tion problems and establish how optimal fleet capacity
changes in the presence of capacity rationing. We then
conclude with a discussion of the results and describe
open issues and worthwhile extensions. All proofs may be
found in the appendix at http://or.pubs.informs.org/Pages/
collect.html.

2. The Capacity Allocation Problem
In this section, we analyze the capacity allocation decision.
We formulate it as a problem in the control of queues,
and we use dynamic programming techniques to investigate
properties of the optimal control policies.

2.1. Model Description

Consider a fleet of c identical vehicles or pieces of rental
equipment accessed by two customer classes whose arrival
processes are independent and Poisson with intensities �1

and �2. Let the durations of their rentals be independent,
exponentially distributed random variables of mean �−1

1

and �−1
2 . Suppose, further, that each arrival wishes to rent

exactly one unit of capacity.
At each arrival epoch a system controller, such as the

manager of the rental location, can decide whether or not
to admit an arriving customer for service—if one of the
c units of capacity is free—or to reject the arrival. Arrivals
that are admitted to service are permitted to complete the
duration of their (randomly distributed) rental periods unin-
terrupted. Rejected customers do not queue; they exit the
system. Similarly, customers that arrive when all c units of
capacity are rented are lost.

Rewards and penalties associated with the system state
and action are as follows. Arrivals that are admitted to ser-
vice pay respective rental fees of $a1 and $a2 per unit
of time. When a customer’s rental request is denied—
either due to the absence of available rental capacity or
because of the particular capacity allocation policy used—
a lump-sum penalty of $�1 or $�2 is incurred, depending
on the customer’s class. (For more on rejection penalties
and their relationship to service-level constraints, please see
Appendix A.)

The assumption that interarrival and service times are
exponentially distributed implies that, at times between
these event epochs, the system evolves as a continuous-time
Markov chain. At these times, the system state can be com-
pletely described by the numbers of class-1 and class-2 cus-
tomers renting units. Furthermore, system control—in the

form of acceptance or rejection of an arriving customer—
is exercised only at arrival epochs, and it is sufficient to
consider only the discrete-time process embedded at arrival
and departure epochs when determining the form of effec-
tive system controls (see Puterman 1994, Chapter 11). That
is, the system can be modeled as a discrete-time Markov
Decision Process (MDP).

In Appendix B, we formally define discounted and
average-cost versions of this MDP. For both cases, we also
indicate why there exist stationary, deterministic policies
that are optimal. Therefore, we will only consider policies
of this class. Furthermore, rather than directly analyze the
MDPs’ objective functions, we use well-known results con-
cerning the convergence of the value-iteration procedure to
analyze the problems.

2.2. Value-Iteration Formulation

We begin our definition of the value-iteration procedure
by “uniformizing” the system. (See Lippman 1975 and
Serfozo 1979.) Formally, we let � = �1 + �2 + c�1 + c�2

and, for the discounted problem with a continuous-time dis-
count rate of �, we uniformize the system at rate �+ � .

Without loss of generality, we can define the time unit so
that �+� = 1. Thus, �i ≡ �i/
�+�� and �i ≡�i/
�+ ��
become, respectively, the probability that the next uni-
formized transition is a type-i arrival or service completion.
Similarly, ai ≡ ai/
�+ �� is the expected discounted rev-
enue per type-i rental until the time of the next uniformized
transition.

Note that the uniformization rate includes the discount
factor, �. In fact, it is well known that discounting at rate �
is equivalent to including a constant intensity at which the
process terminates, after which no more profits will be
earned. Thus, one may think of � as the per-period prob-
ability that the next transition is a terminating one. (For
example, see Puterman 1994, §5.3.)

The rate also includes rental completions of “phantom”
customers. For example, if the current system state is

k1 k2�, then the probability that one of 
c − k1� phantom
type-1 customers or 
c − k2� phantom type-2 customers
completes a rental is 
c − k1��1 + 
c − k2��2. At the end
of such a phantom rental, the observed state remains the
same, 
k1 k2�.

Given these uniformized system parameters, we define
the value-iteration operator T as

Tf 
k1 k2�

= a1k1 + a2k2 +�1H1�f 
k1 k2��+�2H2�f 
k1 k2��

+�1k1f 
k1 − 1 k2�+�2k2f 
k1 k2 − 1�

+ 

�1 +�2�c−�1k1 −�2k2�f 
k1 k2�� (1)

The heart of the procedure is carried out via the maximiza-
tions

H1�f 
k1 k2��=




max�f 
k1 k2�−�1 f 
k1 + 1 k2��

when k1 + k2 < c

f 
k1 k2�−�1 when k1 + k2 = c

(2)
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and

H2�f 
k1 k2��=




max�f 
k1 k2�−�2 f 
k1 k2 + 1��

when k1 + k2 < c

f 
k1 k2�−�2 when k1 + k2 = c

(3)

which are specified for any function f defined on the state
space S = �
k1 k2� ∈Z2 � k1 � 0 k2 � 0 k1 + k2 � c�.

Let v0
k1 k2� ≡ 0 represent an initial estimate of the
optimal expected discounted profit, and vn represent the
estimated value after n iterations of the value-iteration
algorithm:

vn
k1 k2�

= a1k1 + a2k2 +�1H1�vn−1
k1 k2��+�2H2�vn−1
k1 k2��

+�1k1vn−1
k1 − 1 k2�+�2k2vn−1
k1 k2 − 1�

+ 

�1 +�2�c−�1k1 −�2k2�vn−1
k1 k2�� (4)

Then, the fact that

�1 +�2 + 
�1 +�2�c < 1 (5)

for � > 0 ensures that T is a contraction operator and that
�vn� converges to the optimal “value function”

v
k1k2�=a1k1+a2k2+�1H1�v
k1k2��+�2H2�v
k1k2��

+�1k1v
k1−1k2�+�2k2v
k1k2−1�

+

�1+�2�c−�1k1−�2k2�v
k1k2� (6)

whose value equals that of the MDP’s optimal objective
function (see Porteus 1982).

The first two terms on the right-hand side of (6) repre-
sent the expected discounted revenue earned until the next
uniformized transition. The following four represent the
probabilities and associated profits-to-go associated with
system arrivals and service completions. The last term rep-
resents the probability and profit-to-go of a “phantom”
rental completion. (Without loss of generality, we omit the
probability, �, and value, 0, associated with a terminating
transition.)

If no rejection penalties are used 
�1 =�2 = 0�, then (6)
directly reduces to the stochastic knapsack problem, well
known from the telecommunications literature (Ross and
Tsang 1989). Furthermore, for any given rental fees and
penalty values 
a1 a2�1�2�, there exists an equivalent
stochastic knapsack formulation with adjusted rental fees:

 �a1 �a200�.

Theorem 1. For any problem with rewards and penalties

a1 a2�1�2�, and optimal value function v
k1 k2�, there
exists an alternative formulation with rewards

�ai = ai +�i
�i +�� i = 12 (7)

zero penalties, and optimal value function �v
k1 k2�, for
which

�v
k1 k2�= v
k1 k2�+
(

�1

�1

�
+�2

�2

�

)

+�1k1 +�2k2� (8)

Furthermore, a policy is optimal for the original problem
if and only if it is optimal for the transformed problem with
adjusted revenues and zero penalties.

Therefore, in the analysis that follows we will consider
only the transformed problem �vn
k1 k2� with adjusted fees

 �a1 �a2�. Observe that the adjustment factors are linear in
the penalty values and the service rates.

We note that the paper’s numerical results are performed
using an average-cost MDP formulation. (Because they do
not depend on the starting state, “average-cost” results are
easier than discounted results to interpret.) In this case, a
similar result holds, with

�ai = ai +�i�i i = 12� (9)

For a formal development of the value-iteration procedure
and the analogue of Theorem 1 for the average-cost prob-
lem, please see Appendix C at http://or.pubs.informs.org/
Pages/collect.html.

2.3. Optimality of Switching-Curve Policies

To establish structural properties of the optimal control pol-
icy, it is sufficient to show that certain properties of the
functions defined on S are preserved under the action of the
value-iteration operator, T (see Porteus 1982). In particular,
we are interested in submodularity. We say that f 
k1 k2�
is submodular in k1 and k2 if

f 
k1 + 1 k2 + 1�− f 
k1 k2 + 1�

� f 
k1 + 1 k2�− f 
k1 k2� k1 + k2 + 2� c� (10)

Let F be the set of all f defined on S that are submodular
in k1 and k2.

The following theorem states that F is closed under T ,
so that the value-iteration operator preserves submodularity
of the value function. This, in turn, implies that the opti-
mal capacity allocation policy is of a special form; it is a
“switching curve” policy.

Theorem 2 (Altman et al. 2001, Örmeci et al. 2001,
Savin 2001).

(a) f ∈ F ⇒ Tf ∈ F , and therefore �v
k1 k2� ∈ F .
(b) In turn, for each k1 it is optimal to admit customers

of class 1 when in state 
k1 k2� if and only if k2 < kmin
2 
k1�,

where

kmin
2 
k1�

=




c−k1 if �v
k1+1c−k1−1�> �v
k1c−k1−1�

min
k2� 0�k2�c−k1−1 �v
k1+1k2�� �v
k1k2��

otherwise�
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Similarly, for each k2 it is optimal to admit customers of
class 2 when in state 
k1 k2� if and only if k1 < kmin

1 
k2�,
where

kmin
1 
k2�

=




c−k2 if �v
c−k2−1k2+1�> �v
c−k2−1k2�

min
k1� 0�k1�c−k2−1 �v
k1k2+1�� �v
k1k2��

otherwise.

Part (b) of the theorem can be interpreted as follows:
When a given number of customers of a particular class is
already renting equipment, the “next” customer of the same
class is admitted if and only if the number of customers of
the other class present in the system does not exceed some
critical value. This is a switching-curve policy, character-
ized by c critical indices for each of the customer classes.

For the average-cost case we can develop analogous
results. At every pass of the value-iteration procedure, the
operator preserves the submodularity of the estimate of the
value function. This ensures that the results of Theorem 2
apply to the optimal control policy for this case as well.

As an illustration of the optimal capacity allocation poli-
cies, we consider an example with �a1 = 10, �a2 = 5, �1 = 25,
�2 = 10, �1 = 5, �2 = 1, and c = 10 for the case when aver-
age revenue per period is maximized. Figure 1 describes
the capacity allocation decisions for class-2 customers and
illustrates the notion of the “switching curve.”

One feature of this example worth noting is the follow-
ing: class-1 customers are always allowed to rent equip-
ment, i.e., kmin

2 
k1� = c − k1 for all feasible k1 (and so
we did not include the graph of optimal allocation for
class 1). In this case, we say that class-1 customers are
a preferred class. While in every numerical example we
tested there existed a preferred class, we have not been

Figure 1. The optimal capacity allocation policy for
class-2 customers when the average adjusted
revenue per period is maximized 
 �a1 = 10,
�a2 = 5, �1 = 25, �2 = 10, �1 = 5, �2 = 1,
and c = 10�.

k2

k1

k1+ k2 = c

“admit” states

“do not admit” states

optimal “admission” boundary

10

8

6

4

2

k2 = 3

0 2 4 6 8 10

k1 (3) = 6max

able to prove that such a class exists universally. Neverthe-
less, we have been able to characterize a great deal about
preferred-customer classes.

2.4. Preferred Classes and the Optimality of the
Complete-Sharing Policy

In this section, we investigate the conditions that make
a particular customer class a preferred one. Closely con-
nected to the question about the nature of preferred classes
is the issue of the optimality of the CS policy: CS is optimal
when both customer classes are preferred. The following
theorem provides sufficient conditions under which one—
or both—classes may be preferred.

Theorem 3. (a) Define � = �1 + �2, 	� = min
�1�2�,
	a=max
 �a1 �a2�, and

c∗
i = 2+ �

	�
( 	a
�ai

(
�i +�

�i

(
6+ 4

(
�+ 2 	�

�i

))

+ �i

	�+�

(
2+ �+ 2 	�

�i +�

))
− 1

)
 i = 12� (11)

Then, for systems with capacity c > c∗
i , it is always optimal

to admit class-i customers, i = 12.
(b) In turn, for c � max
c∗

1 c∗
2�, the policy of CS of the

service fleet is optimal.

Theorem 3 provides a lower bound on the amount of
capacity sufficient to ensure that a particular customer class
(or both classes) has unrestricted access to the available
equipment. Of course, for profit-maximizing firms, capacity
costs may prevent c from becoming large enough to opti-
mally operate in the complete-sharing regime. In §4, we
investigate the interaction among capacity cost, fleet size,
and tactical control in more detail.

We note that for each customer class this lower bound
is, as expected, a nonincreasing function of the penalty-
adjusted fee paid by customers of this class. We observe
that in the simple case of �1 = �2 � �, (11) implies that
c∗

1 c∗
2 � �/	�. Thus, in the presence of seasonal demand

patterns, these results describe the “off-peak” season when
the demand for rentals may be significantly lower than the
available capacity.

Note that Theorem 3 is stronger than a limiting state-
ment. In general, it is not hard to imagine that as c →+,
a CS policy will be asymptotically optimal. Theorem 3,
however, says that there is a fixed, finite c above which CS
is optimal. This is because, as more and more pieces of
equipment are rented, the probability that the next event is
a service completion, rather than an arrival, grows. Thus,
the busier the system, the stronger its drift toward emptying
out. For large enough c, the expected loss of revenue due
to blocking becomes small when compared to the immedi-
ate gain of taking the next customer, no matter which class
she belongs to.

Theorem 3 states that for sufficiently high service capac-
ity, the CS policy is optimal. It is also possible to show
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that CS is optimal even in the “peak season,” when capac-
ity is tight, provided that the customer classes are similar
in terms of their penalty-adjusted rental fees:

Theorem 4. For either class i ∈ �12�, and j �= i, if

�ai

max��i�j�
�

�j

�j +�i

�aj

�j

 (12)

then it is always optimal to admit type-i customers.

The statement of Theorem 4 is intuitively appealing: All
other parameters of the problem being fixed, there exists a
minimum value of the adjusted rental fee �ai that ensures
that customers of this class should be freely admitted into
the system. CS of service fleet is optimal when (12) is
satisfied for both classes, i.e., when �a1 and �a2 are “close.”

Furthermore, recall that �ai = ai +�i
�i +�� depends on
both the revenue earned when accepting a class-i customer
and the penalty paid when rejecting class-i demand. That is,
a preferred customer may be profitable to serve, unprofitable
not to serve, or some combination of the two. For exam-
ple, a high-volume customer, such as a national account,
may receive a favorable rental rate in return for a large
stream of rentals. At the same time, contractual service-level
requirements or the customer’s market power may imply a
large rejection penalty so that class-i arrivals become VIP.
(For more on the relationship between service-level con-
straints and rejection penalties, see Appendix A at http://
or.pubs.informs.org/Pages/collect.html.)

The sufficient conditions of Theorem 4 are direct ana-
logues to expressions for protection levels in airline seat-
allocation models. (For example, see Belobaba 1989.) Both
sets of inequalities can be interpreted in terms of simple
marginal analysis. For instance, for i = 1, the right-hand
side of (12) describes (a bound on) the expected cost of
admitting an arriving class-1 customer. It is the expected
revenue lost from a blocked class-2 customer that might
have been served. Here �2/
�2 +�1� is the probability that
a class-2 arrives before the admitted class-1 finishes ser-
vice, and �a2/�2 is the expected revenue lost, given the
blocking occurs.

In fact, Örmeci et al. (2001) develops a characterization
of preferred classes that mirrors this “marginal analysis”
result. The left-hand side of (12) is more complex—and
more stringent—than simply �a1/�1, however. This differ-
ence better reflects the more complex dynamics of our
system.

Observe that there exists a broad range of circumstances
under which a class of customers may be preferred. First,
note that if �ai > �aj and �ai/�i � �aj/�j , then type-i cus-
tomers have higher penalty-adjusted rental rates and higher
expected rental durations—and they are preferred. Second,
even though �aj/�j � �ai/�i, type-j customers may also be
preferred, as long as �aj is not too far below �ai.

Conversely, it is possible to construct examples in which
neither of the sufficient conditions of Theorem 4 is satis-
fied. This occurs when �ai > �aj , �i > �j , and �ai/�i < �aj/�j .

Of course, failure to satisfy the sufficient conditions does
not demonstrate that there exists no preferred class.

Finally, we note that the conditions of Theorem 4 are
broadly applicable in that they do not depend on the service
capacity, c, or on the intensity of arrivals of the customer
class being considered for admission. The required param-
eters are simple to estimate from observable data, and the
results are simple to interpret.

3. Heuristic Capacity Allocation Policies
In general, it is optimal to base the control of admis-
sions into the service on the numbers of customers of both
classes 1 and 2 that are in the system at the time each con-
trol decision is made. In practice, however, these “vector”
policies may be difficult to implement, especially for rental
systems with large capacities.

Admission control decisions that are based on the value
of a particular scalar metric derived from this vector state,
rather than the detailed state of the system, may also pro-
vide effective (if suboptimal) controls. One of the most
widely used heuristics is the aggregate threshold (trunk
reservation) policy.

The AT policy assumes that there exists a preferred-
customer class, and it is the class that offers higher revenue
per unit of time. The AT policy admits second-class cus-
tomers as long as the total number of customers already in
the system does not exceed some critical threshold value.

Besides being intuitively appealing, AT policies have
been proven to be optimal whenever �1 = �2 (see Miller
1969). More generally, we expect them to perform well in
cases when the expected service times for different cus-
tomer classes are similar.

Figure 2 illustrates the best AT policy, as well as the
optimal control policy, for the same example shown in Fig-
ure 1. While the control exercised by the AT policy differs

Figure 2. The optimal and the best AT policies for
class-2 customers 
 �a1 = 10, �a2 = 5, �1 = 25,
�2 = 10, �1 = 5, �2 = 1, and c = 10�.

optimal “admission” boundary

best AT “admission” boundary
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from that of the optimal policy, the revenues it generates are
nearly optimal, falling below optimality by about 0.15%.

AT policies, however, do not yield closed-form expres-
sions for system performance measures. In general, the task
of computing the value of the best AT level can be compa-
rable in its complexity to the task of computing the optimal
control policy.

Ideally, we would like to have a policy that combines
ease of calculation with the robust performance of AT con-
trols. In the following section, we develop such a heuristic.
It uses a fluid-model approximation of the stochastic model
to derive closed-form expressions for the AT values.

3.1. Fluid Models and Scaling

In many practical situations, both the size of rental fleet c
and the offered rental intensities �1 = �1/�1 and �2 =
�2/�2 are large. Under these conditions, a deterministic
fluid model may offer a good approximation to the origi-
nal control problem. Indeed, Altman et al. (2001) offer a
heuristic derivation of such a fluid model as the limit of
a linearly scaled sequence of MDPs, and they numerically
evaluate the resulting Hamilton-Bellman-Jacobi equations.

We follow the approach of Altman et al. (2001), but
given the underlying structure of our problem, in which
there are two classes of customers, we can directly ana-
lyze the trajectory of the fluid system. This allows us to
develop an AT heuristic whose performance is robust and
whose closed-form expressions allow for immediate calcu-
lation of policy parameters. Furthermore, our analysis also
allows us to demonstrate the concavity of discounted rev-
enues (of a “�-scaled” version of our model), with respect
to the fleet size, c, a property that becomes important in
the capacity-sizing analysis of §4.

We start by defining the state space and dynamics for
fluid approximations (in general). Time t is continuous, and
the state parameters k1
t� and k2
t� of the original model
become continuous-state variables, restricted to set Sf =

k1
t�� 0 k2
t�� 0 k1
t�+ k2
t�� c�. Poisson customer
arrivals are replaced by the deterministic continuous “flow”
arrivals with intensities �1 and �2. The departure process
becomes deterministic as well: For the state 
k1
t� k2
t��
it is represented by an outflow at rate �1k1
t�+�2k2
t�.

Arrivals are controlled as follows: At time t, a control
policy 
u1
t� u2
t�� results in the total customer inflow
of u1
t��1 + u2
t��2. Thus, for the control trajectories

u1
t� u2
t�� 
0 � ui
t� � 1 i = 12�, the Kolmogorov
evolution equations for the original system are replaced by

dk1
t�

dt
= u1
t��1 −�1k1
t� and

dk2
t�

dt
= u2
t��2 −�2k2
t�

(13)

with a constraint that reflects the finite size of the service
fleet

�1u1
t�+�2u2
t���1k1
t�+�2k2
t�

i = 12 whenever k1
t�+ k2
t�= c� (14)

The total discounted revenue is then the objective to be
maximized. If at t = 0 the system is in the state 
k1 k2�,
then—for a feasible (under (14)) control policy # that uses

u1
t� u2
t��—the total discounted revenue is

�R�
k1 k2#�=
∫ 

0

 �a1k1
t�+ �a2k2
t��e

−�t dt

= �a1k1

�1 +�
+ �a2k2

�2 +�
+R�
k1 k2#� (15)

where

R�
k1 k2#�=
∫ 

0

(�a1�1u1
t�

�1 +�
+ �a2�2u2
t�

�2 +�

)
e−�t dt (16)

is the part of the revenue that actually depends on the con-
trol policy chosen. In what follows, the term “revenue” is
used to designate R�
k1 k2#�.

Our AT heuristic is based on a “scaled” version of the
fluid model:

Definition 1. A �-scaled version of the fluid model with
parameters �1, �2, �1, and �2 is the problem with param-
eters �s

1 = �1�/�1, �s
2 = �2�/�2, and �s

1 = �s
2 = � for

� ∈ ��1�2�.

Note that in every �-scaled version of the fluid model,
the departure rates of both customer classes are equal and
�s

1/�
s
1 = �1/�1, �s

2/�
s
2 = �2/�2. Because the departure

rates of both classes are the same, one can use arguments
similar to those in Miller (1969) to show that the optimal
admission control decisions only depend on the total num-
ber of customers k
t� = k1
t�+ k2
t� in the system. Thus,
given �a1 > �a2, a control policy that admits as many class-1
customers as possible and limits the admissions of class-2
customers is optimal for any �-scaled problem.

3.2. Fluid Aggregate Threshold Heuristic

In the �-scaled model, system dynamics simplify to

dk
t�

dt
= u1
t��

s
1 + u2
t��

s
2 −�k
t�� (17)

In turn, a fluid analogue of the original, stochastic system’s
AT policy admits class 2 customers if and only if the total
system occupancy, k
t�, does not exceed a “fluid aggregate
threshold” (FAT), kFAT. When �1 � c or �1 + �2 � c, such
a FAT policy is a direct analogue of AT policies in the
original stochastic system. For �1 < c < �1 + �2, however,
there does not exist a neat correspondence. Therefore, in the
following sections we define and analyze the FAT policy
within each subset of the relevant parameter range.

3.2.1. The FAT Policy When �1 � c. For systems with
�1 � c, class-1 traffic alone is sufficient to ensure complete
utilization of the rental fleet, and a threshold policy can be
defined and analyzed in a straightforward fashion. In this
case, the control 
u1
t� u2
t�� is defined as follows:


u1
t� u2
t��=





11� for k
t� < kFAT


10� for kFAT � k
t� < c


c�/�s
10� for k
t�= c�

(18)
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Note that, once the system hits the boundary and k
t�= c,
customers continue to be admitted at the maximum feasible
rate, and the system state remains at the boundary there-
after.

Control (18) then implies that, at time t, the revenue-
generation rate

r
t�= �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�
for �1 � c

is given by

r
t � �1 � c�=




�a1�
s
1 + �a2�

s
2

�+�
for k
t� < kFAT

�a1�
s
1

�+�
for kFAT � k
t� < c

�a1�c

�+�
for k
t�= c�

(19)

To compute the total discount revenues for a given kFAT,
we must also account for the starting state k ≡ k
0�.

When k < kFAT � c, there are three elements to the dis-
counted revenues: those earned as k
t� approaches kFAT;
those earned when kFAT � k
t� � c; and those earned after
the boundary has been hit. We calculate each in turn. Let

tFAT =
1
�

ln
(

�1 +�2 − k

�1 +�2 − kFAT

)

be the time that the system state hits kFAT, so that k
tFAT�=
kFAT. Then, from (19) we have

∫ tFAT

0

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

=
( �a1�

s
1 + �a2�

s
2

�+�

)
1− exp
−�tFAT�

�
� (20)

Similarly, let

tc = tFAT +
1
�

ln
(

�1 +�2 − kFAT

�1 +�2 − c

)

be the time at which the system state hits c, so that
k
tc�= c. Then, using (19), we have

∫ tc

tFAT

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

=
( �a1�

s
1

�+�

)
exp
−�tFAT�− exp
−�tc�

�
� (21)

Finally, from (19) the revenues earned after reaching the
boundary are given by

∫ +

tc

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

=
( �a1�c

�+�

)
exp
−�tc�

�
� (22)

Collecting the revenue terms (20)–(22), substituting for
tFAT and tc, and simplifying, we then obtain the discounted
revenues for the FAT policy when �1 � c and k � kFAT < c:

RFAT
� 
k kFAT � �1 � c k � kFAT < c�

= �

�
�+��

(
�a1�1 + �a2�2 −

(
�1 +�2 − kFAT

�1 +�2 − k

)�/�

·
(
�a2�2 + �a1


�1 − c�
�+��/�


�1 − kFAT�
�/�

))
� (23)

When kFAT � k < c, only type-1 customers are admit-
ted to the system. In this case, in the above analysis we
replace tFAT by 0 and kFAT by k. Then, analogous calcula-
tions yield

RFAT
� 
k kFAT � �1 � c kFAT � k < c�

= ��a1

�
�+��

(
�1 −


�1 − c�
�+��/�


�1 − k��/�

)
� (24)

3.2.2. FAT Policy When �1+�2 < c. When �1+�2 < c,
a threshold policy with kFAT < c leads to incomplete uti-
lization of the rental fleet and may be trivially improved
by setting kFAT = c so that all customers are admitted for
service, no matter what the initial state of the system, k
0�.
Here, the policy is, again, a direct analogue of AT policies
in the original stochastic system. Specifically, the optimal
fluid threshold of c corresponds to complete sharing, an AT
policy with a threshold of c.

Because �1 +�2 < c, even with no control the boundary
k
t� = c is never hit (for t > 0). In this case, the optimal
control is


u1
t� u2
t��= 
11�

for any system state, k
t�, and the rate at which revenue is
earned is

r
t � �1 +�2 < c�= �a1�
s
1 + �a2�

s
2

�+�
�

In turn, the revenue calculation is

RFAT
� 
k c � �1 +�2 < c�

=
∫ 

0

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

= �

�
�+��

 �a1�1 + �a2�2�� (25)

3.2.3. FAT Policy When �1 < c � �1 + �2. Finally,
when �1 < c � �1+�2, there does not appear to exist a fluid
analogue of a threshold policy that is both effective and
straightforward to implement. On the one hand, a threshold
of kFAT < c results in incomplete utilization of the rental
fleet and can be improved upon by admitting some class-2
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customers. On the other hand, setting kFAT = c and admit-
ting all class-2 customers is infeasible because the maxi-
mum rate at which the system can be cleared is strictly less
than the rate at which customers are arriving: c� < �s

1+�s
2.

In this case, a natural interpretation of the threshold rule
defines a “soft” threshold when k
t� = c, one that limits,
but does not eliminate, the flow of class-2 customers into
the system:


u1
t� u2
t��=





11� for k
t� < c(
1

�c−�s
1

�s
2

)
for k
t�= c

(26)

so that

r
t � �1 < c � �1 +�2�

=




�a1�
s
1 + �a2�

s
2

�+�
for k
t� < c

�a1�
s
1 + �a2
�c−�s

1�

�+�
for k
t�= c�

(27)

Thus, for �1 < c < �1 +�+2, the control generates system
behavior and revenue that differ from those when kFAT < c
or kFAT = c, and we denote this soft threshold as kFAT = c−.

Given kFAT = c− and any k ≡ k
0� ∈ �0 c�, the system’s
revenues can be split into two components: those earned
before reaching c, and those earned after. If

tc =
1
�

ln
(

�1 +�2 − k

�1 +�2 − c

)

is the time required for the system to reach the boundary,
then the first revenue component in (27) gives us

∫ tc

0

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

=
( �a1�

s
1 + �a2�

s
2

�+�

)
1− exp
−�tc�

�
� (28)

After the full capacity is reached, we use the bottom
revenue-generation rate within (27) to obtain

∫ +

tc

( �a1�
s
1u1
t�+ �a2�

s
2u2
t�

�+�

)
e−�t dt

=
( �a1�

s
1 + �a2
�c−�s

1�

�+�

)
exp
−�tc�

�
� (29)

Adding (28) and (29), and using the expression for tc, we
then have

RFAT
� 
k ��1 <c��1+�2�

= �

�
�+��

(

 �a1�1+ �a2�2�− �a2


�1+�2−c�
�/��+1


�1+�2−k��/�

)
� (30)

3.2.4. Optimal Thresholds and Revenues for the FAT
Policy. We can use the expressions we have derived for
discounted revenues to determine both optimal thresholds
and optimal discounted revenues. In both cases, we obtain
simple, closed-form expressions.

First, we address the optimal threshold, k∗
FAT. For �1 � c,

its determination follows from differentiation of (23) with
respect to kFAT:

Theorem 5. The optimal value of the AT, k∗
FAT, is indepen-

dent of the starting state, k, and is given by

k∗
FAT
c�=




0 for c < �1

(
1− 
 �a2/�a1�

�/
�+��
)


c− 
�1 − c�
(

 �a1/�a2�

�/
�+�� − 1
)

for �1

(
1− 
 �a2/�a1�

�/
�+��
)
� c � �1

c− for �1 < c � �1 +�2

c for �1 +�1 < c�

(31)

We observe that, all other problem parameters being
fixed, the optimal AT value described by (31) is a nonde-
creasing function of the fleet size c. In particular, if the
available rental capacity falls below the critical value

cmin = �1

(
1−

( �a2

�a1

)�/
�+��)


then it is optimal not to admit any class-2 customers into
service. Conversely, if the rental capacity is sufficiently
large, exceeding the offered load from class 1, then the
control on admissions of class-2 customers should be post-
poned until the entire rental fleet is utilized. For the rental
fleet values in between these two critical quantities, some
form of admission control on class-2 customers is optimal,
even in states in which some rental capacity is available.
We observe that the critical index cmin is a decreasing func-
tion of the ratio of penalty-adjusted rental fees �a2/�a1.

When the time-discounting factor � is much smaller
than �, the optimal AT level, described in Theorem 5, is
not particularly sensitive to the choice of �. Even for rental
durations of several months, the service rates (inverse of
the expected service time) are about �� 10−3 per day and
are at least an order of magnitude higher than any realistic
values for � (for example, 30%–40% annual discounting
rate results in �� 10−4 per day). The same argument sug-
gests that k∗

FAT is not sensitive to the choice of �. Thus, it
is straightforward to use k∗

FAT as a threshold for both dis-
counted and “average-cost” versions of the problem.

Using an expression for the optimal AT (31), we obtain:

Theorem 6. Given fixed �s
1, �

s
2, �, �a1, �a2, and �, define

cmin = �1

(
1−

( �a2

�a1

)�/
�+��)
�

(a) If the rental system starts in state k, then the optimal
total discounted revenue is

RFAT
� 
k k∗

FAT
c��
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=




�

�
�+��

(
�a1�1 − �a1


�1 − c�
�+��/�


�1 − k��/�

)
for c � cmin

�

�
�+��

(
�a1�1 + �a2�2

− �a2


�2 + 
�1 − c�
 �a1/�a2�
�/
�+���
�+��/�


�1 +�2 − k��/�

)

for cmin � c < �1 k < k∗
FAT
c�

�

�
�+��

(
�a1�1 − �a1


�1 − c�
�+��/�


�1 − k��/�

)

for cmin � c < �1 k � k∗
FAT
c�

�

�
�+��

(
�a1�1 + �a2�2 − �a2


�1 +�2 − c�
�+��/�


�1 +�2 − k��/�

)

for �1 � c � �1 +�2

�

�
�+��

 �a1�1 + �a2�2� for �1 +�2 < c�

(32)

(b) For fixed values of rental fees, and demand and ser-
vice parameters, RFAT

� 
k k∗
FAT
c�� is a nondecreasing con-

cave function of the rental fleet size c for every k � c.

Inspection of (32) shows that RFAT
� 
k k∗

FAT
c��, like
k∗

FAT
c�, is insensitive to the choice of � for � � �. (Of
course, this insensitivity follows from the �-scaled prob-
lem, not necessarily from the two-class problem in which
�1 �= �2.) Part (b) of Theorem 6 also states that, for
any starting state, FAT revenues are concave in c. Thus,
although the concavity of revenue with respect to fleet size
is difficult to demonstrate in the context of the original
MDP, it emerges naturally from the �-scaled fluid approx-
imation. This concavity property becomes important in the
context of fleet-sizing decisions, which we discuss in §4.

3.3. Numerical Study of the Performance of the
FAT Heuristic

Our motivation for developing the FAT heuristic was that it
should perform well and be easy to implement. Therefore,
to test the policy’s performance we have undertaken a series
of numerical studies that compare its average revenues to
those obtained using the optimal control and the CS policy.

In two of the three cases analyzed above, translation of
the FAT policy (31) to the context of a discrete, stochas-
tic system is straightforward. For �1 � c, we assume that
�/
�+��≈ 1, when necessary, and then round the result-
ing k∗

FAT down to the nearest integer. For �1 + �2 < c, we
set the aggregate system threshold equal to c, effectively
implementing a CS policy.

When �1 < c < �1 + �2, however, k∗
FAT = c−, and the

inflow of class-2 rentals is partially controlled. In this case,
there is not a clear correspondence in a discrete system:
Setting the AT to c implements CS, which does not control
class-2 customers at all; conversely, setting the threshold
to c − 1 completely stops the flow of class-2 customers at
the boundary.

Because both alternatives of the FAT policy are trivial to
compute, we include them both in our numerical tests. In

total, in each numerical experiment we test four policies:
the optimal policy; FAT with c− set to c (“c− = c”); FAT
with c− set to c−1 (“c− = c−1”); and CS. For each set of
system parameters, we evaluate the Markov chains induced
by the four policies (in the case of the optimal policy, via
value iteration) to calculate long-run average revenues.

In our numerical tests, we fix the expected rental dura-
tion of class-1 rentals at 1/�1 = 1, and we run sets of
tests in which we systematically vary the offered load, ' =

�1+�2�/c, as well as the relative processing rate of class-2
customers, �2. Within each test set, ' and �2 also remain
fixed, and we run 
10 × ' + 1� experiments in which we
systematically vary �1 and �2.

More specifically, in each test set we begin with 
10×
'+ 1� equally spaced �1s—from �1 = 0 to �1 =�1c—and
then choose �2 in each case so that �1/�1c+�2/�2c = '.
We then modify the endpoints—where either �1 or �2 equ-
als zero—so that the arrival rate that would be zero actu-
ally equals 0.01. For example, for the set in which ' = 1
and �2/�1 = 1, there are 10× ' + 1 = 11 test points, and
their 
�1�2� values are {
0�019�99�, 
19�, 
28�, 
37�,

46�, 
55�, 
64�, 
73�, 
82�, 
91�, 
9�990�01�}.

Table 1 shows results for the 21 sets of experiments. In
each experiment within a set we record average penalty-
adjusted revenue per period using the optimal policy 
R∗�,
as well as that obtained from the FAT and CS policies
(RFAT and RCS). For each experiment, we then calculate the
percentage revenue lost when using the heuristic controls
(
1−RFAT/R∗�×100% and 
1−RCS/R∗�×100%). Finally,
within each cell of Table 1 we report two statistics that
summarize the results across all 10×'+1 experiments: the
average of the percentage shortfalls, as well as the maxi-
mum shortfall recorded over all cases (in parentheses).

Table 1’s results show that all three policies perform well
at low offered loads. For ' � 1, none of the three policies
controls the inflow of class-2 requests, and all three perform
consistently close to optimality. It is also worth noting that,
in these examples, the CS policy is consistently optimal at
' = 0�5. While the sufficient c∗

i s of Theorem 3 can be very
large—in the thousands in many of these examples—the
offered loads at which the CS policy is actually optimal
appear to be much less extreme.

As ' climbs above 1, the three policies diverge, and the
FAT heuristics outperform CS. At ' = 2—when the offered
load is twice that of the system’s capacity—the FAT with
c− = c− 1 still performs quite well, with a worst optimal-
ity gap of less than 6% and an average gap in each table
cell that is consistently below 1%. Here, the performance
of FAT with c− = c is noticeably worse, with the maxi-
mum gap of 16.1% and an average gap ranging from 2.7%
to 4.7%. The CS policy’s worst-case performance is also
16.1% below optimal, and its average performance in each
cell trails that of FAT with c− = c, falling 7.0% to 9.6%
below optimality.

At very high 's, the FAT heuristic with c− = c − 1
consistently outperforms the other heuristics. For example,
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Table 1. Numerical results. Average and maximum (in parentheses) percent shortfall from optimal revenue for 10' + 1
test cases.

CS policy FAT with c− = c− 1 FAT with c− = c

' �2/�1 = 0�1 �2/�1 = 1 �2/�1 = 10 �2/�1 = 0�1 �2/�1 = 1 �2/�1 = 10 �2/�1 = 0�1 �2/�1 = 1 �2/�1 = 10

0.5 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.8 0.0 (0.0) 0.2 (0.4) 1.5 (2.8) 0.0 (0.0) 0.2 (0.4) 1.5 (2.8) 0.0 (0.0) 0.2 (0.4) 1.5 (2.8)
1.0 0.3 (1.8) 0.9 (1.9) 1.0 (1.9) 0.3 (1.8) 0.9 (1.9) 1.0 (1.9) 0.3 (1.8) 0.9 (1.9) 1.0 (1.9)
1.5 3.1 (6.2) 4.1 (6.5) 6.7 (11.7) 1.2 (4.0) 0.7 (3.2) 0.2 (2.8) 1.9 (5.8) 2.8 (7.3) 4.3 (11.6)
2.0 7.0 (13.1) 6.3 (12.7) 9.6 (16.1) 1.5 (5.9) 0.6 (2.7) 0.3 (2.3) 2.7 (10.9) 3.3 (12.5) 4.7 (16.1)
2.5 9.2 (16.9) 9.6 (16.5) 11.6 (19.6) 1.6 (7.9) 0.7 (4.6) 0.2 (1.9) 3.1 (14.6) 3.5 (16.3) 4.6 (19.6)
3.0 10.9 (20.5) 11.3 (20.1) 12.3 (22.3) 1.6 (9.4) 0.7 (5.3) 0.2 (1.2) 3.5 (17.4) 3.6 (19.1) 4.2 (22.3)

Notes. Penalty-adjusted service fees are �a1 = 10 and �a2 = 5 for class-1 and class-2 customers, respectively. Service rate for class-1 customers
is �1 = 1. Rental fleet size is c= 10.

when ' = 3, the average revenue generated by the FAT pol-
icy with c− = c−1 ranged from 0.2% to 1.9% below opti-
mal, and the worst-case examples of each of the 10×'+1
test sets ranged from 1.2% to 9.4% below optimal. In con-
trast, average and worst-case performance of the FAT with
c− = c and CS policies were three to four times worse.

Thus, as the offered load increases, the performance of
all three heuristics deteriorates with respect to optimality.
In general, the heuristics are exercising insufficient control
of class-2 customers. The relatively strong performance of
the FAT heuristic with “c−” set to c−1 reflects the benefit
of reserving the last unit of rental capacity for “preferred”
class-1 customers when the traffic intensity is high.

Figure 3 provides additional detail on how the setting
of c− affects the performance of the FAT heuristic. In the
figure, rental capacity is c = 10, service rates are �1 = 1�0
and �2 = 0�1, and penalty-adjusted revenues are �a1 = 10
and �a2 = 5. The aggregate offered load is fixed at ' =

�1 + �2�/c = 2, and the x-axis of the figure’s paramet-
ric analysis tracks the fraction of the offered load due to

Figure 3. Performance of alternative FAT heuristics
with c− interpreted as c (dashed line) and as
c − 1 (solid line) (system has c = 10, ' =

�1 + �2�/c = 2, �1 = 1, �2 = 0�1, �a1 = 10,
and �a2 = 5).
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class-1 customers as it is systematically increased from 0%
to 100% of the total: from �1/c = 0 to �1/c = 2. The y-axis
reports the two FAT policies’ resulting percentage shortfall
from long-run average optimal revenue.

As Figure 3 indicates, whenever �1/c � 1�0, the two pol-
icies are identical—with the same threshold, kFAT � c− 1,
and the same long-run average revenues. When �1/c <
1�0, however, the two heuristics’ recommendations differ—
kFAT = c − 1 versus kFAT = c—and average revenues differ
as well. For moderate �1s, the “c− = c − 1” policy outper-
forms the “c− = c” one, and for �1 � c, the reverse is true.

It is worth noting that numerical experiments using
other 's yield plots whose gross features are directly anal-
ogous to those of Figure 3. Larger values of ' lead to more
extreme performance differences between the c− = c − 1
and c− = c variants of the FAT at moderate to very low
values of �1.

4. The Effect of Capacity Allocation on
Optimal Fleet Size

The allocation policies investigated in §§2 and 3 are tactical
controls intended to address instances in which the number
of rental units available falls short of the anticipated near-
term demand. The total fleet size c clearly affects the nature
of the control. In particular, Theorem 3 shows that, given
ample capacity, the optimal control is to give free access to
all customers.

It is also natural to ask the converse question. How does
the use of tactical control affect the fleet size the rental
company should use? When is the optimal fleet size large
enough so that, as in Theorem 3, CS is (nearly) optimal?
More generally, given the ability to change fleet size, what
is the economic value to a firm of exercising tactical con-
trols? In this section, we address both of these questions.

In fact, the effect of capacity allocation on optimal fleet
size is not immediately clear. One might argue that, given
any fixed fleet size, optimal rationing increases revenue per
unit of time. This revenue increase, in turn, allows the firm
to more profitably sustain higher overall capacity levels.
Alternatively, one might argue that rationing reduces the
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aggregate arrival rate to the rental fleet and that, in turn,
fewer units of capacity are required to process the arrivals
that are actually served.

We can provide some insight into these trade-offs by
directly comparing the optimal fleet size under active allo-
cation policies to that under CS, which passively allows all
customers access to rental capacity whenever it is avail-
able. We formulate the problem of finding the optimal fleet
size as

*
#�=max
c


R
c#
c��−hc� (33)

where R
c#
c�� is the average revenue per period when
operating c units under allocation policy #
c�, and the
capacity cost of $h per unit per period is fixed for all c.
Note that, given a fixed offered load, �1+�2, the allocation
policy, #
c�, may vary with c.

We then compare the maximizer of (33) under two
regimes. In one we use #
c� = CS
c�, the CS policy, for
all c. In the other #
c� = #∗
c�, which we define as any
family of allocation policies for which the following con-
ditions hold:

1. For any fixed c, R
c#∗
c���R
cCS
c��.
2. There exists a c̃ <  such that for all c � c̃,

R
c#∗
c��=R
cCS
c��.
3. R
c#∗
c�� − R
c − 1#∗
c − 1�� � R
c − 1

#∗
c− 1��−R
c− 2#∗
c− 2��.
Condition 1 states that, for any c, #∗
c� performs at least

as well as CS.
Condition 2 states that there exists a finite fleet size

above which CS performs as well as #∗
c�. Note that The-
orem 3 demonstrates that such a c̃ exists in the context of
the discounted problem.

Condition 3 requires that average revenues per period
under #∗ are concave in c. Theorem 6 proves that this type
of concavity exists for the FAT policy in the context of the
discounted fluid model, and the result also suggests that the
condition (roughly) holds for AT policies more generally.
Similarly, although we have not been able to prove that the
condition holds for the optimal policy, it has consistently
been present in the numerical tests we have run.

Without loss of generality, we assume that �a1 � �a2, and
we define

h∗
min = R
c̃#∗
c̃��−R
c̃− 1#∗
c̃− 1��

hCS
min = R
c̃CS
c̃��−R
c̃− 1CS
c̃− 1��

h∗
max = R
1#∗
1��−R
0#∗
0��

� max
( �a1�1

1+�1


�a1�1 + �a2�2

1+�1 +�2

)
 and

hCS
max = R
1CS
1��−R
0CS
0��= �a1�1 + �a2�2

1+�1 +�2

�

(34)

Observe that h∗
min and hCS

min are the marginal values of
adding the last piece of equipment, as it becomes optimal
to take all arrivals, first-come first-served. Similarly, h∗

max
and hCS

max are the marginal values of the first piece of equip-

ment under the two schemes. It is not difficult to see that
h∗

min � hCS
min � hCS

max � h∗
max.

The following result uses these relationships to parame-
terize how the fleet size under capacity allocation policies
differs from that under CS:

Theorem 7. Let c∗
h� and cCS
h� be the maximizers of
(33) under #∗ and CS.

(a) If h < h∗
min, then c∗
h�= cCS
h�� c̃.

(b) If h ∈ �h∗
min hCS

min�, then c∗
h�� cCS
h�.
(c) If h ∈ �hCS

min hCS
max�, then c∗
h� may be smaller, equal

to, or larger than cCS
h�.
(d) If h ∈ �hCS

max h∗
max�, then c∗
h�� cCS
h�.

(e) If h > h∗
max, then c∗
h�= cCS
h�= 0.

We note that the results of Theorem 7 can be extended
to the multiclass case, as well as to multiperiod capacity-
sizing models with more complex cost structures. We
briefly discuss the latter in the discussion at the end of the
paper.

Thus, the optimal fleet size using capacity rationing may
be either higher or lower than that under the CS policy.
The theorem shows that the relationship between the two
depends fundamentally on the unit cost of capacity.

Parts (a) and (e) of Theorem 7 show that optimal capac-
ity levels for CS and #∗ coincide for very high and very
low values of holding costs. If holding costs are extremely
high, the expected revenues cannot justify the acquisition
of even a single unit of capacity, even under rationing. On
the other hand, if the holding costs are extremely low, then
Theorem 3 implies that the optimal rationing policy is CS,
and in this case the profit-maximizing capacity levels of the
two policies again coincide.

Parts (b) and (d) show ranges for which the c∗
h� unam-
biguously dominates and is dominated by cCS
h�. Part (b)
shows that, for low values of h, the lower marginal value
to the rationing policy of adding the “last” unit of capacity
(before CS becomes optimal) drives c∗
h� below cCS
h�.
Part (d) shows that, for high values of h, the benefit of
being able to reject lower-revenue customers allows c∗
h�
to climb above cCS
h�.

Finally, part (c) defines a set of intermediate values of h
for which c∗
h� can be higher, the same as, or lower than
cCS
h�. The ordering of the relationships reflects the prox-
imity of h to the boundaries, hCS

min and hCS
max.

While the relationships described in the theorem are not
strict inequalities, it is not difficult to develop examples
in which c∗
h� differs from cCS
h�. Figure 4 illustrates an
example in which the #∗
c� used for each c is the optimal
policy for that c. Given the problem parameters c̃ = 30,
h∗

max = 9�09, hCS
max = 7�14, h∗

min = 0�65, and hCS
min = 0�63.

Between hCS
max and h∗

min, optimal fleet sizes for the two poli-
cies are equal at h= 6�5.

We now turn to the economic benefit of capacity rat-
ioning. Table 2 presents a set of 25 numerical experiments
that compare the performance of the optimal (OPT) and
complete sharing (CS) policy. For each example, the table
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Figure 4. Optimal capacity size as a function of the
holding cost under the optimal and CS poli-
cies (fixed problem parameters: �a1 = 10,
�a2 = 5, �1 = �2 = 10, and �1 =�2 = 1).
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Note. Capacity cost per unit of time, h, is systematically varied.

reports the optimal fleet size, profit per period, and (per-
cent) profit margin for both policies. In all of the exper-
iments, the aggregate arrival rate 
�1 + �2�, service rates
(�1 and �2), and penalty-adjusted revenues (�a1 and �a2)
remain fixed. Then, the fraction of the offered load due
to class-1 customers 
�1/
�1 + �2�� and the holding cost
per unit of time per unit of capacity 
h� are systematically
varied. The table’s results reflect three phenomena that are
worth noting.

The first is the effect of increased holding costs on fleet
sizes, displayed in Figure 4. At lower relative holding costs,
capacity rationing reduces the optimal fleet size relative to
that for CS in a company. As one looks down each pair of
columns, however, one sees that rationing allows a com-
pany to maintain larger capacity than would be optimal

Table 2. Numerical results. Optimal fleet sizes, profit per unit time, and profit margins for the optimal (OPT) and
complete-sharing (CS) policies.

�1/
�1 +�2�= 0�1 �1/
�1 +�2�= 0�3 �1/
�1 +�2�= 0�5 �1/
�1 +�2�= 0�7 �1/
�1 +�2�= 0�9

h/�a2 OPT CS OPT CS OPT CS OPT CS OPT CS

Fleet sizes 0.5 11 11 12 13 12 13 13 13 14 14
0.7 9 9 9 10 10 11 11 12 12 12
0.9 5 5 6 8 8 9 9 10 11 11
1.1 0 0 3 4 6 7 8 9 9 10
1.3 0 0 2 0 4 3 6 6 8 8

Profits 0.5 18�52 18�52 27�22 27�02 36�40 36�17 45�66 45�33 54�71 54�60
0.7 8�47 8�47 16�27 16�05 24�98 24�26 33�46 32�82 41�94 41�62
0.9 1�48 1�48 8�31 7�00 15�59 14�01 23�01 21�76 30�50 29�99
1.1 — — 3�46 0�97 8�71 5�82 14�50 12�28 20�50 19�61
1.3 — — 1�12 — 4�15 0�60 7�90 4�82 12�03 10�86

Profit margin 0.5 67�3% 67�3% 90�7% 83�1% 121�3% 111�3% 140�5% 139�5% 156�3% 156�0%
0.7 26�9% 26�9% 51�7% 45�9% 71�4% 63�0% 86�9% 78�1% 99�9% 99�1%
0.9 6�6% 6�6% 30�8% 19�4% 43�3% 34�6% 56�8% 48�4% 61�6% 60�6%
1.1 — — 21�0% 4�4% 26�4% 15�1% 33�0% 24�8% 41�4% 35�7%
1.3 — — 8�6% — 16�0% 3�1% 20�3% 12�4% 23�1% 20�9%

Notes. In all test cases, the following parameters are fixed: �a1 = 10, �a2 = 5, �1 = �2 = 1, and �1 + �2 = 10. The relative value of the holding
cost, h/ �a2, and the fraction of demand due to the preferred class, �1/��1 +�2�, are systematically varied.

under CS. Interestingly, in looking across each row, one
sees that for very small and very large fractions of class-1
customers, optimal capacities from the two policies are the
same. In the former case, this is due to the optimality of
CS; the policies themselves coincide.

In the latter case, however, the optimal policy reserves
capacity for class-1 customers. While complete sharing
is suboptimal, the blocking of class-1 customers due to
class-2 admissions is a rare enough event that it does not
significantly affect optimal fleet size (or, for that matter,
profits).

The second is the fact that, when capacity costs are rel-
atively low, CS appears to be fairly robust with respect to
average profit per unit of time. In particular, when h/�a2 =
0�5, the profit advantage derived from capacity rationing is
minimal, less than 1%, and when h/�a2 = 0�7, the advan-
tage is no more than 3%. Here, increased costs, due to
additional capacity, are made up for by increased revenues,
due to additional class-2 traffic. Rather, it is when capacity
costs are high—as high as or higher than class-2 penalty-
adjusted revenues—that the profit increase due to restric-
tions on class-2 access becomes significant.

The last effect is that, conversely, capacity rationing pro-
vides for a more consistently significant increase in profit
margins over CS. For example, even when capacity costs
are half that of penalty-adjusted class-2 revenues, mar-
gins may increase by as much as 9%. As capacity costs
approach and exceed class-2 fees, the benefit that follows
the ability to limit class-2 customers increases far more
sharply.

Of dollar profit and profit margin, which is more indica-
tive of the value of rationing to the rental company? For
capital-constrained companies, we would argue it is the lat-
ter. Indeed, in many rental businesses, capacity is a signif-
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icant capital investment, and measures, such as return on
assets, that track the (dollar) efficiency of asset utilization
become critical measures of performance for managers and
for investors. In our numerical experiments, h—the cost per
unit of capacity per unit of time—reflects interest expenses
of capacity investment (as well as maintenance expenses).
In dividing profit by h · c (or, equivalently for us, by c),
profit margin accounts for this investment in capacity.

Thus, absolute profits lost due to lack of control may
not be large. Nevertheless, the ability to ration capacity
and, in turn, to adjust the size of a rental fleet can, at the
same time, lead to a significant improvement in the eco-
nomic utilization of the assets employed. The CS policy
maximizes physical—rather than economic—utilization of
assets. When CS is optimal, the two notions naturally coin-
cide. When it is not optimal, however, it leads to lower
economic productivity.

5. Discussion
Our formulation of the rental capacity allocation problem
captures some essential features that the more traditional
yield-management literature does not address. In it, we
explicitly represent the fact that customers arrive at ran-
dom, use pieces of equipment for rental periods of uncer-
tain duration, and then return the equipment to be used
again.

Using dynamic programming techniques, we are able
to characterize “switching-curve” policies as being opti-
mal. We also demonstrate that there are two sets of con-
ditions under which a customer class should be labeled a
“VIP” and have unrestricted access to the available service
capacity: one in which there is ample excess capacity and
another in which the penalty-adjusted revenue and service-
rate parameters are favorable. In particular, we find that
customers may be assigned the VIP tag even when their
rental fees are lower than those of the other class.

When applied to both customer classes, the sufficient
conditions for VIP status become conditions in which
“complete-sharing” (CS) policies are optimal. These poli-
cies are of interest because service companies often use
equipment utilization as a criterion for measuring system
performance and may be reluctant to turn away customers.
Theorem 4 implies that the goals of maximizing utiliza-
tion and of maximizing revenues are properly aligned, even
in the peak season, if the penalty-adjusted rental fees and
service rates of the different customer classes are similar.

We also analyze a “fluid aggregate threshold” (FAT) pol-
icy that is based on a fluid approximation of the original
policy. Our numerical tests show that the performance of
the FAT heuristic is close to that of the optimal admis-
sion policies over a broad range of operating regimes.
In addition to providing a simple and effective capacity
allocation policy, the fluid model results in revenue that is
a concave function of the rental fleet size. This concavity

is essential for the analysis of related capacity-sizing deci-
sions and for an understanding of how capacity allocation
schemes affect them.

We then demonstrate that, given this concavity property,
the optimal fleet size using capacity rationing may be either
higher or lower than that under the CS policy. As capacity
costs grow, the optimal fleet size under rationing grows
relative to that under CS.

Finally, we show that appropriate adjustment of the fleet
size under CS may produce nearly optimal profits. Even in
this case, however, the economic productivity of assets can
suffer significantly. When CS is not optimal, its maximiza-
tion of physical utilization leads to economic underutiliza-
tion of resources.

Thus, the formulation and results represent a promising
step in furthering the understanding of the management of
rental systems. Of course, more work remains to be done.
There are several aspects of the allocation problem itself
that merit additional analysis.

First, as we noted in §2, rental companies may have prior
estimates of the expected duration of the rental period, and
this information would be of value when deciding whether
to admit a customer to the system. At the same time, the
use of this information will also significantly complicate
the analysis. For example, it will likely require expanding
the state space of the system from numbers of pieces of
equipment in use to estimates of the duration of the remain-
ing rental period for every piece of equipment.

Similarly, our description of rental dynamics does not
include the treatment of reservation systems, which may
provide additional information about rental demand. Again,
the inclusion of reservation systems should help to improve
system performance, and it will also add an additional layer
of complexity to the analysis.

One may also consider price, in addition to capacity
allocation, as a mechanism for control. In particular, an
interesting case exists in which one class of customers
represents national accounts, whose prices are fixed by
long-term contracts, while the other represents “rack-rate”
customers, for whom price may be used as a short-term
control. Then, the rental company may use capacity alloca-
tion to maintain service levels for national-account clients
at the same time it uses prices to maximize profits from
rack-rate customers.

The relationship between capacity allocation and fleet
sizing can also be explored over a longer time horizon. For
example, consider a longer-term, discrete-time problem in
which each period represents a season. At the start of each
season, rental capacity is adjusted by buying and selling
units, and during the season tactical controls, such as the
ones developed in this paper, are used to manage short-term
capacity shortages. Then, if the season’s expected revenues
are concave in the fleet size, it is not difficult to show that
the optimal fleet-sizing policy is a “buy-up-to/sell-down-to”
policy that is an analogue of “order-up-to” policies in the
inventory literature (Heyman and Sobel 1984).
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Finally, we recall that our formulation uses lump-sum
penalty costs to capture the long-term cost of denying
access to customers. An alternative would be to impose
service-level constraints on the blocking probabilities of
arrivals. While we believe that the current policies should
be “nearly” feasible, particularly for large systems, a thor-
ough analysis of the relationship between the two formula-
tions would be of broad interest.

Appendix
The appendix is available in the online companion on the
Operations Research website at http://or.pubs.informs.org/
Pages/collect.html.
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