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In traditional supply chain inventory management, orders are the only information firms
exchange, but information technology now allows firms to share demand and inventory

data quickly and inexpensively. We study the value of sharing these data in a model with one
supplier, N identical retailers, and stationary stochastic consumer demand. There are
inventory holding costs and back-order penalty costs. We compare a traditional information
policy that does not use shared information with a full information policy that does exploit
shared information. In a numerical study we find that supply chain costs are 2.2% lower on
average with the full information policy than with the traditional information policy, and the
maximum difference is 12.1%. We also develop a simulation-based lower bound over all
feasible policies. The cost difference between the traditional information policy and the lower
bound is an upper bound on the value of information sharing: In the same study, that
difference is 3.4% on average, and no more than 13.8%. We contrast the value of information
sharing with two other benefits of information technology, faster and cheaper order
processing, which lead to shorter lead times and smaller batch sizes, respectively. In our
sample, cutting lead times nearly in half reduces costs by 21% on average, and cutting batches
in half reduces costs by 22% on average. For the settings we study, we conclude that
implementing information technology to accelerate and smooth the physical flow of goods
through a supply chain is significantly more valuable than using information technology to
expand the flow of information.
(Supply Chain; Multi-Echelon Inventory Management; Periodic Review Policies; Electronic Data
Interchange)

1. Introduction
Information technology has had a substantial impact
on supply chains. Scanners collect sales data at the
point-of-sale, and electronic data interchange (EDI)
allows these data to be shared immediately with all
stages of the supply chain. The application of these
technologies, especially in the grocery industry, has
substantially lowered the time and cost to process an
order, leading to impressive improvements in supply
chain performance (see Cachon and Fisher 1997, Clark
and Hammond 1997, Kurt Salmon Associates 1993).

As a result of these success stories, there is now a

general belief within industry that capturing and
sharing real-time demand information is the key to
improved supply chain performance. The purpose of
this research is to test this belief by rigorously mea-
suring the value of information sharing and compar-
ing this value to two other sources of supply chain
improvement: reducing lead times and increasing
delivery frequency by reducing shipment batch sizes.
Note that the same information technology that facil-
itates information sharing also contributes to the re-
duction of lead times and shipment frequency by
reducing the time and cost to process orders. Thus, the
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question addressed in here is not whether information
technology improves supply chain performance, but
how. Specifically, does the primary gain come from
sharing information or from allowing products to flow
more quickly and evenly in the supply chain?

We address this question within the context of a
supply chain with one supplier and N identical retail-
ers that face stationary stochastic consumer demand
with a known distribution. There are fixed transpor-
tation times between locations, and shipment quanti-
ties equal a multiple of a base batch quantity. There
are holding costs at all levels and back-order penalty
costs at the lowest level. This model provides a
reasonable representation of supply chains selling an
established product under constant pricing condi-
tions.

We consider two levels of information sharing. With
traditional information sharing the supplier only ob-
serves the retailers’ orders. With full information shar-
ing the supplier has immediate access to the retailers’
inventory data. We develop an inventory policy for
each information sharing level. Reorder point policies
are used with traditional information sharing. The
retailers also use reorder point policies with full
information, but the supplier does not. Instead, the
supplier uses its additional information to better allo-
cate inventory among the retailers and to improve its
order decisions (i.e., to better time its own replenish-
ments).

The difference between supply chain costs under
traditional and full information is one measure of the
value of shared information. However, there may exist
even better policies for either information level, that is,
optimal policies are unknown for each level. To ac-
count for this possible bias, we develop a simulation-
based lower bound over all feasible policies, no matter
what the level of information sharing is. The cost
difference between traditional information and the
lower bound is the maximum value of shared infor-
mation.

In a numerical study with a wide range of param-
eter values we find that information sharing reduces
supply chain costs by 2.2% on average, and the gap
between traditional information policy cost and the
lower bound is 3.4% on average. Cutting lead time by

nearly half (from five to three periods) reduces costs
by 21% on average, and cutting batch size in half
reduces supply chain costs by 22%. We recognize that
this comparison is meaningful only if those lead time
and batch size reductions can be reasonably expected
from the implementation of information technology.
In fact, we did observe comparable reductions at
Campbell Soup Company when it implemented infor-
mation technology to improve its supply chain.1 There
has also been other documentation on the impact of
information technology in the grocery industry: Ba-
rilla, the world’s largest pasta producer, reduced its
lead time from over one week to two days (Harvard
Business School case 9-694-046); and H.E.B., a large
grocery chain based in Texas, eliminated 6 to 10 days
from its lead time (Harvard Business School case
9-195-125). We conclude that while information shar-
ing does reduce costs, simply flowing goods through
the supply chain more quickly and more evenly
produces an order of magnitude greater improve-
ment.

The next section reviews the related literature. Sec-
tion 3 outlines the model, and §4 describes how to
select inventory policies with traditional information
sharing. Section 5 details a lower bound over all
feasible policies. Section 6 develops the full informa-
tion inventory policy. Section 7 details a numerical
study, §8 discusses our results, and §9 concludes.

2. Literature Review
The following papers show how sharing demand and
inventory data can improve the supplier’s order quan-
tity decisions in models with known and stationary
retailer demand: Bourland et al. (1996), Chen (1998),

1 Campbell Soup Company gave us ordering data from several
retailers before and after the implementation of information tech-
nology. In the “before” data we saw that retailers often purchased in
multiple pallet quantities because, according to our contacts at
Campbell Soup Company, they did not want to bother with the
hassle of placing orders frequently. In the “after” data it is clear that
each products’ minimum batch size was no greater than one pallet,
and in some cases Campbell Soup Company was willing to deliver
in half-pallet increments. In addition, the lead time for deliveries to
the retailers was reduced from about one week to two to three days,
primarily resulting from the reduction in the order processing time.
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Gavirneni et al. (1999), and Aviv and Federgruen
(1998). Lee et al. (2000) use shared information to
improve the supplier’s order quantity decisions in a
serial system with a known autoregressive demand
process. Liljenberg (1996) studies how to use shared
information to improve the supplier’s allocation of
inventory among the retailers. In our model shared
information is exploited for both uses: better supplier
replenishments and better allocations to the retailers.

We focus on sharing demand and inventory data,
but there are other data that can be shared in a supply
chain. Gavirneni et al. (1999) measure the benefit of
sharing the parameters of the retailer’s ordering policy
with the supplier. Aviv (1998) explores the benefits of
sharing forecasts for future demand.

In our model, as in the other studies mentioned, it is
assumed that information is always shared truthfully.
Cachon and Lariviere (1997) study forecast sharing
when the forecast provider has an incentive to provide
an overly optimistic forecast of demand.

Both Lee et al. (2000) and Gavirneni et al. (1999)
assume there exists a perfectly reliable exogenous
source of inventory; information sharing has no im-
pact on the retailer because its orders are always
received in full after a fixed number of periods. In the
other papers, as in our model, the supplier is the only
source of inventory. Therefore, information sharing
may impact the retailers by changing the supplier’s
order quantities or allocations.

Gavirneni et al. (1999) and Aviv and Federgruen
(1998) allow for limited supplier capacity, whereas
capacity is unrestricted in our model and in the other
papers.

The reported benefits of information sharing vary
considerably. Liljenberg (1996) finds that better alloca-
tion lowers supply chain costs by 0% to 3.9%. Chen
(1998) finds that supply chain costs are lowered up to
9%, and on average by 1.8%. Aviv and Federgruen
(1998) report benefits of 0%–5%. In contrast, Lee et al.
(2000) find that information sharing lowered supply
chain costs by about 23% in their scenario with the
highest demand nonstationarity. However, Graves
(1999) studies a similar model, with the exception that
there is no outside inventory source, and concludes
that information sharing provides no benefit to the

supply chain. Gavirneni et al. (1999) report that shar-
ing the retailer’s demand data reduced the supplier’s
cost by 1%–35%.2 The impact on the supply chain’s cost
would be lower because information sharing in their
model has no impact on the retailer’s costs.

There is other research related to our work. Lee et al.
(1997) find that sharing information reduces the sup-
plier’s demand variance, which should benefit the
supply chain, but they do not quantitatively measure
this benefit. There are many studies that investigate a
supply chain model with one supplier, N retailers,
stochastic consumer demand, and batch ordering.
Some of them assume traditional information (e.g.,
Axsäter 1993, Cachon 1995, Chen and Samroengraja
1996, Lee and Moinzadeh 1986, Svoronos and Zipkin
1988), while others assume full information (e.g., Chen
and Zheng 1997, Graves 1996, McGavin et al. 1993).
Because of different assumptions and test problems, it
is not possible to meaningfully compare supply chain
costs across those two sets of studies. Several research-
ers study allocation rules, but none addresses the issue
of information sharing (see Cachon 1995, Chen and
Samroengraja 1996, and Graves 1996). Anand and
Mendelson (1997) study a one-period model in which
retailers possess some local information that cannot be
shared with either a central agent or other retailers. In
our full information model all relevant information
can be shared with the central agent (i.e., the supplier).

Chen and Zheng (1994) develop a lower bound over
all feasible policies for a multiple retailer model. They
show that a full information policy is reasonably close
to optimal, but they do not compare this policy with a
traditional information policy. Graves (1996) also
shows that his full information policy is close to
optimal.

3. Model
Firm 0 is the supplier and firms [1, N] are identical
retailers. The supplier replenishes its inventory from a
perfectly reliable single source, that is, the supplier’s
orders are always received after a constant lead time.

2 Those data are taken from the scenarios with the highest supplier
capacity. They found that the value of information sharing declined
as the supplier’s capacity decreased.
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The supplier is the retailers’ only source of inventory,
so there is no diversion of stock among the retailers
and stockouts at the supplier cause replenishment
delays for the retailers. Inventory is reviewed period-
ically, and within each period the following sequence
of events occurs: (1) retailers order, (2) the supplier
orders, (3) inventory shipments are received and re-
leased, (4) consumer demand occurs, and (5) inven-
tory holding and backorder costs are charged.

The following variables are defined before demand
in period t (between Events 3 and 4) for each firm i
� [0, N]: I i(t), on-hand inventory; B i(t), outstanding
back orders; O i(t), on-order inventory, but not yet
shipped; IT i(t), in-transit inventory; and IP i(t) � I i(t)
� B i(t) � IT i(t), inventory position.3 The supplier’s
on-order inventory is always zero because its source
always ships inventory immediately, but a retailer’s
on-order inventory is positive when the supplier is
unable to fill the retailer’s order completely. Variables
without a period designation apply to period t, e.g., I i

is retailer i’s inventory in period t before consumer
demand.

A superscript “e” on a variable indicates that it is
measured at the end of the period, and a superscript
“b” indicates that it is measured at the beginning of
the period. (Naturally, IP i

e(t) � IP i
b(t � 1).) Dropping

the subscript from a variable denotes the vector of that
variable across all firms, e.g., IP � {IP 0, . . . , IP N}.
Since retailers are identical, it is convenient to associ-
ate a variable with a generic retailer: A subscript “r”
indicates a variable applies to any retailer, and a
subscript “s” identifies the supplier.

Define D r
� as demand at one retailer over � consec-

utive periods. Demand is discrete, independent, and
identically distributed across retailers and across time.
We assume D r

1 � [0, d� ], d� is a finite integer, and Pr(D r
1

� 1) � 0. Let � r � E[D r
1]. Demands not filled

immediately from stock are backordered and eventu-
ally filled.

There are holding and back-order costs in each
period: h s � 0 per unit of stock at the supplier or en

route to the retailers, h s � h r per unit of stock at the
retailers, where h r � 0, and p r per back order at each
retailer.

Each shipment to a retailer equals an integer num-
ber of batches, where a batch is Q r units. Each supplier
order is an integer multiple of Q sQ r units. Because all
of the supplier’s shipments to the retailers equal an
integer number of batches, all supplier variables are
measured in batches. When the supplier submits an
order in period t, it receives the entire order in period
t � L s. A batch shipped to a retailer in period t is
received in period t � L r. The supplier will ship part
of a multiple batch retailer order.

4. Traditional Information Policies
This section defines the inventory policies the firms
use under traditional information. We then demon-
strate how to evaluate expected supply chain cost for
a given policy. A search over the set of reasonable
policies (defined later) yields the optimal policy.

4.1. Inventory Policies
The retailers implement a (R r, nQ r) reorder point
policy: When R r � IP r

b � O r
b, a retailer orders the

smallest integer multiple of Q r units to ensure that R r

� IP r � O r. The supplier implements an analogous
(R s, nQ s) reorder point policy. Reorder point policies
are probably not optimal in most cases, but the opti-
mal policies under traditional information are not
known. Nevertheless, reorder point policies are sim-
ple to implement and intuitively reasonable. In fact,
they are optimal in a serial supply chain with batch
ordering (Chen 1997).

It remains to define the supplier’s policy for allocat-
ing inventory among the retailers when the supplier’s
inventory is insufficient to cover the retailers’ total
orders in a period. We assume the supplier imple-
ments batch priority allocation. With this scheme the
supplier assigns in every period a priority to each
batch ordered in that period. Suppose retailer i orders
b batches in a period. Then, the first batch in the order
is assigned priority b, the second batch is assigned
priority b � 1, and so forth. All batches ordered
within a period are placed in a shipment queue, and
they enter in decreasing priority order. If multiple

3 Some authors define inventory position to include on-order inven-
tory. That definition is less cumbersome when working with tradi-
tional ordering policies but more cumbersome when working with
the lower bound.
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batches have the same priority, a fair coin toss deter-
mines the sequence in which they enter the shipment
queue. Actual deliveries to the retailers are based on
the shipment queue on a first-in-first-out basis. There-
fore, all batches ordered before period t are shipped
ahead of batches ordered in period t (but possibly in
the same period). Under batch priority the retailer
ordering the most batches within a period is presumed
to have the highest need, and therefore the first batch
in its order is assigned the highest priority for the
period. Of course, priorities only matter when inven-
tory is insufficient to cover the retailers’ orders.

Even though batch priority is a reasonable alloca-
tion rule given traditional information, there may exist
better allocation schemes. For example, because the
supplier observes the time since each retailer’s last
order, the supplier might use those data to better
determine the retailers’ priorities. However, we be-
lieve that it is computationally intractable to evaluate
expected costs under that allocation scheme. Further-
more, the difference between our traditional informa-
tion policy and the lower bound provides a conserva-
tive estimate of the value of shared information.

4.2. Evaluating Expected Costs
Let E[C] be the expected per period supply chain
holding and back-order costs for a given pair of
reorder points,

E�C� � hsQrE�I s
e� � N�hsE�IT r

e�

� �hs � hr	E�I r
e� � prE�B r

e�	,

where all of the above expectations depend on the
chosen reorder points. (They are omitted for nota-
tional clarity.) The equations we provide evaluate
E[C] exactly when R s � �1, otherwise those same
equations evaluate E[C] approximately. We begin
with several straightforward results. We then turn to
the evaluation of the supplier’s shipping delay, i.e., the
number of periods the supplier delays shipping a
batch in a retailer’s order. Evaluation of that distribu-
tion function is the main challenge in the evaluation of
E[C].

From Little’s Law, E[ITr
e] � �rLr and E[Ir

e] � �rE[S],
where E[S] is the expected number of periods in
which a unit is charged holding costs at a retailer (i.e.,

its expected sojourn in inventory). Also using Little’s
Law and observing that with reorder point policies IP s

� O s and IP r � O r are uniformly distributed on the
intervals [R s � 1, R s � Q s] and [R r � 1, R r � Q r],
respectively, it can be shown that

E�B r
e� � E�I r

e� � �r�E�U� � Lr � 1	 � �Rr �
Qr � 1

2 � ,

E�I s
e� � Rs �

Qs � 1
2

�
N�r

Qr
�E�U� � Ls � 1	,

where E[U] is the expected number of periods the
supplier delays shipping a batch to a retailer. (See
Axsäter 1997 for additional details.)

It remains to evaluate E[U] and E[S]. Some ad-
ditional random variables are needed. When R r � IP i

b

� O i
b, define V i(t) � R i � IP i

b(t) � O i
b(t). Call V i the

overshoot. From Cachon (1995),

Pr�Vi � v	 �
Pr�D r

1 � Qr � v	 � Pr�D r
1 � v	

¥ c�0
Qr�1 �1 � Pr�D r

1 � c		
.

Let v� be the maximum overshoot, v� � d� � 1. Let b r(v)
be the number of batches a retailer orders because of
an overshoot v,

br�v	 �  v
Qr � 1.

Define U bv as the number of periods the supplier
delays shipping the bth batch in a retailer order
triggered by an overshoot v. From Cachon (1995),

E�U� �
¥ b�1

br�v	 ¥ v�0
v� E�Ubv� Pr�Vr � v	

¥ v�0
v� Pr�Vr � v	br�v	

.

Taking a weighted average over all units in the supply
chain yields

E�S�

�

1
Qr

¥ b�1
br�v	 ¥ c�1

Qr ¥ v�0
v� ¥ u�0

u� E�Sbcvu� Pr�Vr � v	 Pr�Ubv � u	

¥ v�0
v� Pr�Vr � v	br�v	

,

(1)

where u� is the maximum shipping delay and S bcvu is
the inventory sojourn of the cth unit in the bth batch of
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an order that is triggered by an overshoot v and
experiences a shipping delay of u periods. (When R s

� �1, u� � L s � 1, otherwise u� � L s � 1.) From
Cachon (1995),

E�Sbcvu� � �
��u�Lr�1




Pr�D r
� � Rr � v

� �b � 1	Qr � c � 1	. (2)

When R s � �1, (1) and (2) are exact, otherwise they
are approximations: When R s � �1, a retailer’s lead
time demand is not independent of the lead time.

Now the only missing piece is the distribution func-
tion of Ubv. That distribution function is evaluated next.

4.3. The Supplier’s Delay Distribution
Suppose in period t retailer j experiences an overshoot
v. Thus, U bv is the number of periods the supplier
delays shipping the bth batch in retailer j’s order. For
brevity, let batch b refer to that batch. Because the
supplier implements a reorder point policy, Cachon
(1995) shows that

Pr�Ubv � u	 �
1

Qs
�
q�1

Qs

Pr�Ubvq � u	,

where

Pr�Ubvq � u	 � � Pr�XB v
Ls�u � Rs � q � b	

1
Pr�XF v

u�Ls�1 � �1 � br�v	 � �Rs � q � b		

Rs � q � b � 0, 0 � u � Ls

Rs � q � b � 0, u � Ls � 1
Rs � q � b 	 0, u � Ls � 1.

In the above, XBv
� is the number of batches the retailers

order over periods [t � �, t], excluding batches in period
t shipped after batch b and all batches retailer j orders in
period t. Similarly, XFv

� is the number of batches the
retailers order over periods [t, t � �], excluding batches
in period t shipped before batch b and all batches retailer
j orders in period t. Think of XBv

� and XFv
� as the

supplier’s “time backward” and “time forward” demand
processes relative to retailer j’s period t order. Note that the
above results do not depend on the allocation scheme the
supplier implements. The evaluations of XBv

� and XFv
� do

depend on the allocation scheme.
XB v

� and XF v
� are the summation of retailer j’s order

process and the order processes of the other N � 1
retailers. Refer to those other N � 1 retailers as the
“non-j” retailers. Hence, we begin with retailer j’s
order process and then consider the order process of a
non-j retailer. Finally, these processes are combined to
yield XB v

� and XF v
�.

4.3.1. Retailer j’s Order Process. Define JF v
� as the

number of batches retailer j orders over periods [t

� 1, t � �], and JB v
� as the number of batches retailer

j orders over periods [t � �, t � 1]. Define the
following random variable for any retailer i,

Wi�t	 � Rr � Qr � IPi�t	 � Oi�t	.

Given that every Q r demand triggers a retailer order,
the (W i) demand before the start of period t triggers
retailer i’s last order in period t or earlier. Also, the
(Q r � W i)th subsequent demand after the start of
period t triggers retailer i’s first order to occur after
period t. In general, let Y r

�(W i(t)) be the number of
batches retailer i orders over periods [t � 1, t � �],

Y r
��x	 � �x � D r

�	 �

Qr .

Let w be the realization of W j(t),

w � v �  v
QrQr.

It follows that JF v
� � Y r

�(w).
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Let W jv(t � 1) be W j(t � 1) conditional on retailer
j’s period t overshoot. From Bayes theorem,

Pr�Wjv�t � 1	 � w	 �
Pr�D r

1 � v � Qr � w	

Pr�Vj � v	
.

Note that the (W jv(t � 1) � 1) previous demand
triggered the last batch ordered by retailer j in period
t � 1 or earlier. Hence, JB v

� � Y r
�(Q r � 1 � W jv(t

� 1)).

4.3.2. The Non-j Retailers’ Order Process. Con-
sider retailer k, where k � j. Define YB � as the number
of batches retailer k orders over periods [t � �, t],
excluding any batches shipped after batch b. Define
YF � as the number of batches retailer k orders over
periods [t, t � �], excluding any batches shipped
before batch b. Let 
 equal batch b’s priority.

Begin with retailer k’s period t order process. Re-
tailer k orders Y r

1(W k(t � 1)) batches in period t.
Because W k(t � 1) is independent of V j, W k(t � 1) is
uniformly distributed on the interval [0, Q r � 1].
According to batch priority, all batches retailer k
orders in period t with higher than b priority are
shipped before batch b. (Recall that batch b’s priority
is b.) Any batch with priority b is shipped before batch
b with a 0.50 probability. Hence, let YB 0(W k(t � 1)) be
YB 0 conditional on W k(t � 1),

YB 0�Wk�t � 1		 � 0.5�Y r
1�Wk�t � 1		 � 
	 �

� 0.5�Y r
1�Wk�t � 1		 � 
 � 1	 �.

For a given W k(t � 1), retailer k’s order process in
period t is independent of its order process in periods
[t � �, t � 1]. Hence,

Pr�YB � � y	 �
1

Qr
�

w�0

Qr�1 �
x�0

y

Pr�Y r
��Qr � 1 � w	 � x	

� Pr�YB 0�w	 � y � x	.

Now consider YF �. All batches with a priority lower
than b are certainly shipped after batch b, and a batch
with priority b is shipped after batch b with 0.50
probability. Let YF 0(W k) be YF 0 conditional on W k.
Because Y r

1(Q r � 1 � W k) is the number of batches
retailer k orders in period t,

YF 0�Wk	 � 0.5 min �b, Y r
1�Qr � 1 � Wk		

� 0.5 min �b � 1, Y r
1�Qr � 1 � Wk		.

W k is independent of V j, so W k is also uniformly
distributed on the interval [0, Q r � 1]. Given W k,
retailer k’s order process in period t is independent of
its order process in periods [t � 1, t � �]. Hence,

Pr�YF � � y	 �
1

Qr
�

w�0

Qr�1 �
x�0

y

Pr�Y r
��w	 � x	

� Pr�YF 0�w	 � y � x	.

4.3.3. The Order Process of N Retailers. Define
NB � and NF � as the (N � 1)th fold convolutions of
YB � and YF �, respectively;

XB vj
� � JB v

� � NB �,

XF vj
� � JF v

� � NF �.

Because the ordering processes of retailers are inde-
pendent, the above are simple convolutions.

4.4. Finding Optimal Reorder Point Policies
For a fixed R s, E[C] is convex in R r, so it is straight-
forward to search for the optimal R r given R s. How-
ever, E[C] is not necessarily jointly convex in R s and
R r. Hence, finding the optimal reorder points requires
a search over feasible R s values. Fortunately, it is
possible to constrain the search region. There is no
need to consider R s � �Q s, because then increasing
R s provides the retailers with a better lead time
without increasing the supplier’s inventory above
zero. For a sufficiently large R s there is no need to
consider an even larger R s because then the supplier
(almost) always fills the retailers’ orders immediately;
any further increase in R s would increase the suppli-
er’s inventory without reducing costs at the retailers.
(See Cachon 1995 or Axsäter 1997 for additional de-
tails.)

5. Lower Bound
This section develops for this model a lower bound for
supply chain costs that is independent of the level of
information sharing. The first step divides the supply
chain’s costs into two components. The second step
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evaluates a lower bound for each component. The
final step sums the components’ lower bounds to yield
a lower bound for the supply chain.

5.1. A Division of Supply Chain Costs
Actual supply chain holding and back-order costs in
period t are

C � hsQrI s
e � �

i�1

N

�hsIT i
e � �hs � hr	I i

e � prB i
e�. (3)

Define the supplier’s echelon inventory level, IL s, as the
amount of inventory (in units) at the supplier or lower
in the system minus total consumer backorders (be-
fore consumer demand in period t):

IL s
e � QrI s

e � �
i�1

N

�IT i
e � I i

e � B i
e�.

IL s is measured in units (i.e., not in batches, as are the
other supplier variables) because the supplier’s eche-
lon inventory level is not necessarily an integer mul-
tiple of Q r units. Rewrite (3) as

C � hsIL s
e � �

i�1

N

�hrI i
e � �hs � pr	B i

e�. (4)

Each period, the supply chain must decide an
inventory quantity to order from the supplier’s source
and quantities to ship to the retailers. These shipment
release decisions are made before the realization of
demand, yet the actual costs, (4), are incurred after
demand. To link the shipment release decisions to
actual costs, we construct a system of charges that are
incurred before demand and equal actual costs in
expectation. (We deliberatively use “charges” to refer
to our system of fees and use “costs” to refer to actual
costs.)

In our system of charges, in period t retailer i is
charged G r(IP i, R*) and the supplier is charged
G s(IL s, IP, R*), where

G� r�y	 � E�hr�y � D r
Lr�1	 �

� �hs � pr	�y � D r
Lr�1	 ��,

Gp�y, R	 � �G� r�y	 � G� r�y � Qr� R � y
Qr

� 1��
y � R

0 otherwise,

Gr�y, R	 � G� r�y	 � Gp�y, R	,

Gs�y, IP, R	 � hs�y � N�r	 � �
i�1

N

Gp�IPi, R	,

and R* is the largest integer, such that G� r(R* � Q r)
� G� r(R*).

We now confirm that the expected sum of our
charges equals expected actual costs. Because G p(IP i,
R*) is merely a transfer payment between the supplier
and the retailers,

Gs�ILs, IP, R*	 � �
i�1

N

Gr�IPi, R*	 � hs�ILs � N�r	

� �
i�1

N

E�hrI i
e�t � Lr	 � �hs � pr	B i

e�t � Lr	�.

Over an infinite horizon

E�hrI i
e�t � Lr	 � �hs � pr	B i

e�t � Lr	�

� E�hrI i
e � �hs � pr	B i

e�,

and within any period E[h sIL s
e] � E[h s(IL s � N� r)].

So

E�C� � E�Gs�ILs, IP, R*	� � �
i�1

N

E�Gr�IPi, R*	�. (5)

Thus, actual costs have been divided into two compo-
nents: The first component is the supplier’s charges
and the second component is the retailers’ charges.

5.2. Evaluation of the Lower Bound
We seek a lower bound for both the supplier’s charges
and the retailers’ charges. Begin with the retailers. Let
C r � min E[G� r(IP i)]. Since G� r( y) is convex and all
retailer shipments must equal a multiple of Q r units, a
reorder point policy minimizes expected costs. In fact,
R* is the optimal reorder point: If IP i � R* � 1,
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shipping another batch to the retailer raises its costs; if
IP i � R*, shipping another batch to the retailer lowers
its costs. When the supplier can raise IP i above R* in
every period, under a reorder point policy IP i is
uniformly distributed on the interval [R* � 1, R*
� Q r]. In that case,

Cr �
1

Qr
�
c�1

Qr

G� r�R* � c	.

The reorder point R* also minimizes E[G r(IP i, R*)],
even if the supplier is unable to raise IP i above R* in
every period: G p(IP i, R*) exactly compensates the
retailer for any additional costs incurred due to the
supplier’s less than perfect reliability. Furthermore, C r

� min E[G r(IP i, R*)]. The function G p(IP i, R*) is
analogous to Clark and Scarf’s (1960) induced penalty
function, because it equals the additional cost the
retailer incurs when the supplier fails to deliver im-
mediately what the retailer requests. So NC r is a tight
lower bound for the retailers’ charges; from (5), our
lower bound is now

min E�C� � min E�Gs�ILs, IP, R*	� � NCr.

Turn to the supplier’s charges. It is not known
which policy minimizes the supplier’s charges be-
cause of the location constraint: Shipping a batch to
retailer i in period t might minimize expected costs in
period t, but does not necessarily minimize costs in
future periods. To circumvent this problem, the loca-
tion constraint is relaxed, which means that batches
can be freely and instantly moved from one retailer to
another in each period. (This shuffling of batches
occurs before demand, i.e., when the shipment release
decisions are made.) Therefore, shipping a batch to a
retailer with the highest need in period t does not
prevent the supply chain from moving that batch to a
higher need retailer in period t � 1.

Let C s be expected supplier charges with the loca-
tion constraint relaxed,

Cs � min E�Gs�ILs, IP, R*	�

s.t. �
i�1

N

IPi � ILs,

IPi � IP i
b � � iQr � i � 
. . . , �1, 0, 1, . . . �.

Each period the retailers’ inventory positions are cho-
sen subject to two constraints: The sum of the retailers’
inventory positions cannot exceed the system’s inven-
tory level, IL s; and inventory can be added or sub-
tracted from a retailer only in integer batch quantities.
The first constraint applies to any feasible policy. In
the second constraint, the free shuffling of inventory
allows � i � 0, whereas any feasible policy is restricted
to � i � 0. (Note that allowing a free shuffling of
inventory among retailers is equivalent to allowing
negative orders.) Thus, C s � NC r is a lower bound for
supply chain costs, i.e.,

min E�C� � Cs � NCr.

As with any feasible policy, a policy that yields C s

must make two decisions: how inventory should be
allocated among the retailers (what � i to choose for
each retailer), and how much inventory the supplier
should order each period.

Begin with the allocation decision. Define H( y, r) as
the change in penalty charges when an additional
batch is allocated to a retailer,

H�y, r	 � Gp�y, r	 � Gp�y � Qr, r	.

Note that H( y, R*) is nonincreasing in y. Therefore,
penalty charges decline if IP j � IP i � Q r and one
batch is removed from retailer j and allocated to
retailer i. So the first goal of the allocation decision is
to balance the retailers’ inventory positions: Move a
batch from the retailer with the highest inventory
position to the retailer with the lowest inventory
position as long as the difference between their inven-
tory positions (before moving the batch) is greater
than Q r. After balancing the retailers’ inventory posi-
tions the supplier allocates its inventory (whenever I s

b

� 0, otherwise the supplier has no inventory to
allocate). The retailers’ inventory positions are sorted
in ascending order and batches are allocated in that
sequence. Because G p( y � R*, R*) � 0, the supplier
stops allocating inventory when either it runs out of
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inventory or when the lowest retailer inventory posi-
tion is above R*.

The supplier’s ordering decision is more challeng-
ing than the allocation decision. We develop a myopic
policy and then argue that the myopic policy is indeed
optimal.

Define the supplier’s echelon inventory position, EIs

� ILs � QrITs. Recall that ILs is measured in units and ITs

is measured in batches, so QrITs is the number of units in
transit to the supplier. Also define Ĝs(y, IP, R*),

Ĝs�y, IP, R*	 � min hs�y � ND r
Ls	

� E� �
i�1

N

Gp�IPi � D r
Ls � � iQr, R*	�

s.t. �
i�1

N

IPi � D r
Ls � � iQr � y � ND r

Ls

� i � 
. . . , �1, 0, 1, . . . �. (6)

In words, Ĝ s(EI s, IP, R*) is the supplier’s expected
charges in period t � L s given that batches will be
allocated among the retailers to balance their invento-
ries as much as possible. (Note that EI s � ND r

Ls is the
supplier’s echelon inventory level in period t � L s.)
The supplier’s period t order is EI s � EI s

b, where EI s

� EI s
b must be a nonnegative integer multiple of Q rQ s.

From (6), each batch the supplier orders will certainly
increase period t � L s costs by h sQ r. However, each
batch the supplier orders will also reduce penalty
charges. The supplier must order a multiple of Q s

batches. Consider the �th set of Q s batches the sup-
plier could order, � � {1, 2, . . .}. Assuming the sup-
plier has ordered (� � 1)Q s batches, the supplier
should order an additional Q s batches if the expected
reduction in penalty charges due to those batches is
larger than the expected increase in holding costs due
to those batches, h sQ rQ s. Hence, we need to evaluate
the expected reduction in penalty charges.

In period t � L s the supplier will be able to allocate
to the retailers the batches it orders in period t plus the
I s � IT s

b unallocated batches that are in the system in
period t. Consider the bth batch among those batches.
In period t � L s it might be allocated to some retailer.
If it is allocated to a retailer, then it certainly will be

allocated to the retailer with the lowest inventory
position. Let Z b(t � L s) be that retailer’s period t � L s

inventory position before this batch is allocated, that
is, if that batch is allocated to that retailer, then that
retailer’s inventory position is increased from Z b(t
� L s) to Z b(t � L s) � Q r. Thus, that batch will lower
period t � L s penalty charges by H(Z b(t � L s), R*).
Note that H( y � R*, R*) � 0 and H( y � �Q r, R*)
� (h s � p r)Q r. Hence, to minimize period t � L s

charges, the supplier should order the �th set of Q s

batches if

hsQrQs � �hs � pr	Qr �
b�Is�IT s

b����1	Qs�1

Is�IT s
b��Qs

� Pr�Zb�t � Ls	 � �Qr	

� �
w��Qr�1

R*

Pr�Zb�t � Ls	 � w	H�w, R*	, �7	

where the right side above is the expected reduction in
period t � L s penalty charges due to ordering those
batches. Because H( y, R*) is decreasing in y and Z j�1

stochastically dominates Z j, there exists a �* � 0 such
that (7) holds for all � � �*, but not for � � �*. Thus,
given that the supplier has decided to order (� � 1)Q s

batches, it will reduce period t � L s charges if it orders
one more set of Q s batches as long as � � �*. In short,
the myopic policy orders �*Q s batches.

The implementation of (7) requires the distribution
function of Z b(t � L s). Let Y i(IP i, R) equal the
minimum number of batches that must be allocated to
retailer i over periods [t � 1, t � L s] so that IP i(t
� L s) � R,

Pr�Yi�IPi, R	 � x	 � Pr�D r
Ls � IPi � R � xQr � 1	.

Let Y(IP, R) equal the minimum number of batches
that must be allocated to all retailers over periods [t
� 1, t � L s] so that they all have an inventory position
greater than R,

Y�IP, R	 � �
i�1

N

Yi�IPi, R	.

(Demand independence across retailers implies the
above is a simple convolution.) If fewer than b batches
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are required to raise the inventory position of all of the
retailers above R, then the bth batch is surely allocated
to a retailer with an inventory position above R:

Pr�Zb�t � Ls	 � R � 1	 � Pr�Y�IP, R	 � b � 1	.

We now argue that the myopic policy is optimal,
i.e., yields mean cost C s. Since Z b(t � L s) stochasti-
cally dominates Z b(t � L s � 1), the �th set of Q s

batches that the supplier could order in period t will
reduce period t � L s � 1 penalty charges more than
period t � L s penalty charges. So, if ordering the �th
set of Q s batches is justified in period t (i.e., period t
� L s penalty charges are reduced more than the
additional holding costs those batches create), then
ordering them is certainly justified in any later period.
In other words, the actions taken in period t to
minimize costs in period t � L s do not prevent the
minimization of costs in subsequent periods. Because
the myopic policy in period t does not interfere with
the myopic policy in future periods, the myopic policy
minimizes costs in every period, i.e., it is optimal.

Although the described policy yields E[C s] over an
infinite horizon, there unfortunately does not appear
to be a simple method to evaluate E[C s] exactly. (The
state space for IP is quite large, and it is not known
how to evaluate the steady state distribution of IP
under the myopic policy.) Therefore, as a practical
solution we use simulation to estimate E[C s]. We
initialize the simulation with IP 0

b � 0 and IP i
b equal to

a random draw from a uniform random variable over
the interval [�Q r, 0], i.e., the system begins with no
inventory. We begin collecting cost data L s periods
after the first supplier order and stop collecting cost
data L s � 1 periods after the 
th supplier order, for
some 
 � 1. Let c s

j be the mean cost in the jth
simulation. After n simulations, let C*s be the estimate
of E[C s],

C*s �
1
n �

j�1

n

c s
j .

Assuming c s
j are drawn from identical and indepen-

dent normally distributed random variables, C*s has a

Student t distribution with n � 1 degrees of freedom.4

Hence, confidence intervals can be constructed for C*s.
Our estimate of the lower bound equals C*s � NC r.

Chen and Zheng (1994) develop several lower
bounds for multi-echelon inventory systems. Their
model is somewhat different: There are no order
quantity restrictions and they include explicit order-
ing costs. Nevertheless, they also divide the system’s
costs into two components and evaluate lower bounds
for each one. However, since their model does not
include minimum order quantities, they are able to
explicitly evaluate each component’s lower bound.

6. Full Information Policy
Full information provides the supplier with data to:
(1) improve its order quantity decisions and (2) to
improve its allocation decisions. It can make better
orders because the supplier’s local inventory data are
not a perfect proxy for the supply chain’s replenish-
ment need: They do not measure the supply chain’s
total inventory nor do they capture how the supply
chain’s inventory is allocated among the retailers.
Allocation of inventory can be enhanced for two
reasons: (1) allocations can be based on the retailers’
inventory positions rather than the number of batches
they order (when Q r is large each retailer might order
one batch, but their inventory positions may differ
substantially); and (2) the allocation of a batch can be
based on the retailers’ inventory positions in the
period the batch is shipped rather than in the period
the batch is ordered (as is done with batch priority).

Although the lower bound decision rule (7) is not
optimal if batches cannot be freely moved among
retailers, it does do, at least in part, what a full
information policy should do: Its order recommenda-
tion is influenced by both the total amount of inven-
tory in the system as well as how that inventory is
distributed within the system. Since that rule is rea-
sonable, we assume that under full information the

4 For each scenario we tested in the numerical study we evaluated
the kurtosis of the data. (The kurtosis of a normal random variable
is zero). We constructed a QQ plot for the 10 scenarios with the
highest absolute kurtosis values, which revealed that even for those
scenarios it is reasonable to assume the normal distribution.
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supplier uses (7) to decide its order quantity each
period.

We conjecture that (7) will tend to order fewer
batches than optimal because it underestimates the
value of inventory for reducing penalty charges: The
expected inventory position of the retailer allocated
the bth batch in the supplier’s order will be lower
without the free shuffling of inventory than with the
free shuffling of inventory. However, this bias occurs
only if the retailers’ inventory positions are out of
balance, i.e., only if a free shuffling is useful. We
conjecture that out of balance situations are less likely
as Q r is increased, consumer demand variability is
decreased, or as L s is decreased.

The full information policy must also specify how
inventory is allocated/shipped to the retailers. The
lower bound policy uses a retailer reorder point, R*, to
decide when to ship inventory to the retailers, but it is
easy to confirm with a few numerical examples that R*
is generally a poor choice in actual implementation.5

Unfortunately, there does not appear to be a simple
technique for choosing the best reorder point. There-
fore, we implement the retailer’s optimal reorder point
under traditional information; that reorder point is
substituted for R* in (7). Note that this allocation
policy is an improvement over batch allocation because
the supplier will always ship a batch to the retailer
with the lowest inventory position in the period the
batch is shipped rather than to a retailer that had the
lowest inventory position in some prior period (when
the batch was ordered).

As with the lower bound, a priori evaluation of
expected per period costs with this full information
policy is not possible. Hence, we evaluate this policy
using the same simulation approach used to evaluate
the lower bound. There is no guarantee that this full

information policy will perform better than the tradi-
tional information policy. However, the numerical
study finds that it did perform better in almost all of
the tested scenarios.

7. Numerical Study
This section reports on a numerical study that evalu-
ates supply chain costs with the traditional informa-
tion policy, the full information policy, and the lower
bound. Section 7.1 details the parameters and methods
and §7.2 details the results.

7.1. Parameters and Methods
The numerical study consists of the 768 scenarios
formed from all combinations of the following param-
eters:

N � 
4, 16� Qr � 
2, 4, 8, 16� Lr � 
1, 5�

hr � 1 � hs pr � 
5, 25� �r � 
0.36, 1�

Qs � 
1, 4, 16� Ls � 
1, 5� hs � 
0.5, 1�.

In all scenarios � r � 1. The parameters are chosen to
reflect a wide range of situations: small and large
batch sizes (relative to mean demand), short and long
lead times, cheap and expensive supplier inventory,
low and high back-order penalty costs, and low and
high consumer demand variability. When � r � 1,
demand at each retailer is Poisson. The distribution is
truncated, so that Pr(D r

1 � 7) � 1, whereas in the
actual distribution Pr(D r

1 � 7) � 0.99999. 6 When � r

� 0.36, demand is a discretization of a Normal
distribution with mean 1 and standard deviation 1

3 :

Pr�D r
1 � 0	 � 0.066807; Pr�D r

1 � 1	 � 0.866386;

Pr�D r
1 � 2	 � 0.066807; Pr�D r

1 � 3	 � 0.

Although we do not expect to observe the above
distribution in practice, it provides a representation of
supply chain behavior with low consumer demand
variability.

For each scenario the system-wide cost-minimizing
reorder points are found assuming traditional infor-
mation. The costs evaluations are exact when R s

5 Intuition also suggests that R* is not a good choice. When h r is
small relative to h s, R* is quite large. That means that once
inventory arrives at the supplier it will be immediately shipped to
the retailers. (If the supplier held the inventory, then it would fill the
retailers’ orders quickly and their average inventory would be quite
high.) Pushing inventory down to the retailers immediately is not
risky when inventory can be freely moved among the retailers, but
it can be quite costly if rebalancing is not possible. At the other
extreme, if h r is large relative to h s then R* will be low and the
retailers will probably run higher back orders than they should.

6 The mean of that distribution is 0.99999 and the standard deviation
is 0.99992.
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� �1, and approximate otherwise. We confirmed via
simulation that the approximation introduces little
error.

To estimate the full information policy cost and the
lower bound we conducted 40 simulations of each
scenario, where each scenario collected data over 10
supplier order cycles (
 � 10). Due to sampling error,
it is possible to observe a mean lower bound that is
greater than the mean full information policy cost. For
those scenarios in which that occurred, we disposed of
the original data and conducted 90 additional simula-
tions per scenario. These latter data are used in our
analysis.7 For each scenario we constructed 95% con-
fidence intervals for both the lower bound and the full
information policy cost. The mean confidence interval,
expressed as a percentage of the mean estimate, is
0.5% for the lower bound and 0.8% for the full
information policy cost. We conclude that the esti-
mates are sufficiently accurate.

7.2. Results
Figure 1 displays a histogram of the cost difference
between the traditional information policy and the full

information policy, i.e., our realized value of information
sharing. Those differences, as well as the cost differences
displayed in the other figures, are all expressed as
percentages of the traditional information policy cost.
The mean benefit of the full information policy is 2.2%,
the maximum benefit is 12.1%, and for 95% of scenarios
the percentage is no more than 5.6%.

Figure 2 displays a histogram of the cost difference
between the full information policy and the lower
bound, i.e., the potential cost improvement if the
optimal full information policy were implemented.
The mean is 1.2%, the maximum is 10.5%, and for 95%
of scenarios the percentage is no more than 4.1%. (In a
few scenarios the lower bound estimate exceeds the
feasible policy estimate, which we attribute to sam-
pling error.) We conclude that the performance of our
full information policy is quite close to optimal.

Figure 3 presents the upper bound on the value of
shared information: the cost difference between the
traditional information policy and the lower bound.
The mean value is 3.4%, the maximum is 13.8%, and
for 95% of scenarios the value is no more than 8.0%.

We investigated two other possible benefits of infor-
mation technology. One is that information technology
reduces order processing times, which we model as a
reduction in Lr. The second benefit is that information

7 Due to this procedure there is a positive bias for the difference
between the full information cost and the lower bound cost in the
scenarios that are not discarded.

Figure 1 Traditional vs. Full Information
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technology reduces order processing costs. We model
that as a reduction in Qr, because a firm can justify more
frequent ordering with lower order processing costs.
Although the magnitude of these effects will depend on
the context, we consider the impact of cutting batch sizes
in half or the impact of reductions in Lr from 5 to 3, from
3 to 1, and from 5 to 1. (As we mention in the introduc-

tion, we feel that these are reasonable changes to the Lr

and Qr parameters.) In each scenario we assume tradi-
tional information sharing. Table 1 displays data on the
potential cost reductions. Across all scenarios it is appar-
ent that a reduction in Lr or Qr can have a significant
impact on supply chain costs and a significantly greater
impact than sharing information.

Figure 2 Full Information vs Lower Bound

Figure 3 Maximum Value of Shared Information
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8. Discussion
Our results are surprising. Indeed, we undertook
this research with the strong expectation that we
would be able to demonstrate significant benefits to
information sharing in these models. So why do the
data speak the opposite conclusion? We conjecture
the following answer: The retailers’ orders convey
to the supplier a substantial portion of the informa-
tion the supplier needs to perform its ordering and
allocation functions. When a retailer is flush with
inventory, its demand information provides little
value to the supplier because the retailer has no
short-term need for an additional batch. A retailer’s
demand information is most valuable when the
retailer’s inventory approaches a level that should
trigger the supplier to order additional inventory,
but this is also precisely when the retailer is likely to
submit an order. Hence, just as the retailer’s de-
mand information becomes most valuable to the
supplier, the retailer is likely to submit an order,
thereby conveying the necessary information with-
out explicitly sharing demand data.

How can we reconcile our results with the clear
trend across many industries to apply information
technology to logistics and inventory management? In
fact, our results are quite consistent with that trend:
We do find substantial savings from lead time and
batch size reductions, both of which are facilitated by
the implementation of information technology. We
only conclude that the observed benefits of informa-
tion technology in practice are due more to the impact

of information technology on lead time and batch size
than in facilitating information sharing. Further, be-
cause we measure the value of information sharing
using a lower bound on any feasible inventory policy
that uses shared information, this finding will not be
changed by the formulation of more sophisticated
algorithms for sharing information.

Although our model is representative of many
actual supply chains, we recognize that our conclusion
is limited to the setting we consider. In particular, in
our model demand is known, the retailers are identi-
cal, there exists only a single source for inventory,
there are no capacity constraints, there are no incen-
tive conflicts among the supply chain’s firms, and
firms choose rational ordering policies.

We anticipate that information sharing can have a
significantly greater value in environments with un-
known demand, for example, early sales of new
products or established products on promotion. In
those settings information sharing would improve the
supplier’s ability to detect shifts in the demand pro-
cess.

We study a model with identical retailers for two
reasons. First, nonidentical retailer models are far
more complex to analyze. With nonidentical retail-
ers it is not even known how to evaluate reorder
point policies with traditional information. Second,
in our setting we anticipate that information has the
highest value with identical retailers. Information
sharing allows the supplier to identify which retail-
ers have the highest need for replenishments. This is

Table 1 Shared Information vs. Lead Time Reduction or Batch Size Reduction

Upper Bound on the Value
of Complete Information*

% Decrease in Total Supply Chain Cost

Retailer Lead Time Reduction
With Traditional Information

Retailer Batch Size Reduction
With Traditional Information

3 to 1 5 to 3 5 to 1 16 to 8 8 to 4 4 to 2 2 to 1

Minimum 0% 5% 4% 9% 16% 8% 3% 1%
Mean 3% 29% 21% 43% 36% 27% 17% 10%
Median 3% 30% 22% 46% 36% 26% 15% 7%
Maximum 14% 57% 35% 71% 49% 47% 43% 37%

* (Traditional Information Cost � Lower Bound)/Traditional Information Cost.
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most important when the retailers are nondistin-
guishable, i.e., when they have identical demand
processes. In fact, Aviv and Federgruen (1998) ob-
tain comparable results to ours in a model with
nonidentical retailers. Our justifications notwith-
standing, additional research is needed to assess
information sharing with nonidentical retailers.

Although a single inventory source is reasonable for
many settings, in some supply chains the firms may
have access to a second inventory source, albeit at a
higher cost. In those settings information sharing may
allow the supply chain to better decide when it should
utilize its alternative sources.

Gavirneni et al. (1999) found that information
sharing is most valuable when capacity is not re-
strictive; information is valuable only if the system
has the flexibility to respond to the information.
Hence, imposing a capacity constraint on the sup-
plier would probably lower the value of information
in our model.

We have assumed that a benevolent dictator de-
cides all inventory shipments. This is reasonable
when the sole objective is minimizing total supply
chain cost, in other words, it doesn’t matter which
firm makes the decision. However, in actual supply
chains the firms might not share the same objectives.
Additional research is needed to determine how the
firms will behave in those settings. For example,
they may needlessly hoard inventory, thereby rais-
ing costs for everyone. It is important to determine
which conditions provide the players with the in-
centive to truthfully reveal their private information
and whether revealing information eliminates de-
structive gaming.8

8 For many helpful comments, the authors thank Lee Schwarz,
Sridhar Tayur, Paul Zipkin, and seminar participants at the Depart-
ment of Industrial Engineering and Engineering Management at
Stanford University and the Operations Research Center at the
Massachusetts Institute of Technology. The assistance of the asso-
ciate editor and the reviewers is graciously acknowledged.
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