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Abstract

Many decisions in Operations management involve a choice between early action at

low cost but with little information and delayed action with full information, but

at a higher cost. For example, in managing a supply-chain, one can postpone some

orders until more demand information becomes available. This decision, also known

as Quick Response, has been analyzed as a multi-stage newsvendor model with

Bayesian updating. A similar problem exists in the context of product development,

where often design decisions have to be made despite residual uncertainty about

market requirements or inputs from other information providing activities. In this

context, however, the uncertain information is not a continuous parameter (such as

demand), but a discrete set of non-comparable (design) alternatives. Thus, existing

models from the supply-chain literature are not applicable. In this article, we develop

a generalizedmodel of decision making based on preliminary information and present

applications in the ¯elds of product design and supply chain management.
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1 Introduction

Many decisions in product development and supply chain management require a choice

between an early action at low cost but with little information (and thus the danger of

error), and a delayed action with full information but at substantially higher cost. If the

information is made available gradually, rather than in one single step, the decision maker

can act at several points in time.

She can either act before receiving any information, relying on prior information, which

leads to low cost for any given action, but a high risk of a mismatch between what is done

and what, ex-post, should have been done: parts are ordered for a con¯guration that the

customer ultimately decides not to order, tools are developed for drawings that are later

modi¯ed by a design department, or orders are placed for ski-parkas that are not matching

the consumer's taste.

In the other extreme, the decision maker can choose to delay any action until all un-

certainty is resolved. While this avoids errors and mismatch, it may make a response

prohibitively expensive: activities delay the critical path, and orders may need expediting

or slip beyond the quoted lead-time.

As an intermediate option, the decision maker can act after receiving preliminary infor-

mation, which allows a more accurate although not perfect response. Such preliminary

information can be given in the form of early-season sales in managing an apparel sup-

ply chain, of preliminary drawing releases in concurrent development teams, or of initial

discussions with a customer in make-to-speci¯cation production.

The sharing of preliminary information is facilitated by recent advances in communication

technologies and by closer links within and across organizations. This is true in supply

chains, where preliminary information about forecasts is shared through vertically inte-
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grated information systems, as well as in product development, where easily transferrable

digital design representations have almost completely replaced the traditional libraries of

paper drawings. However, even in a world of almost unlimited communication bandwidth,

there remains a fundamental problem: the more visibility one party gains into the ongoing

information processing activities of another party, the more likely the resulting informa-

tion is preliminary rather than ¯nal. Thus, making decisions based on such preliminary

information becomes a key managerial problem.

Decisions based on preliminary information and Bayesian updating have received much

attention in the supply chain literature (e.g., Fisher & Anand 1996, Donohue 1996, Eppen

& Iyer 1997). However, other environments, in particular product development, have not

yet been analyzed with a comparable methodology. The major limitation of applying the

existing models to these settings lies in a fundamental di®erence in the topology of the

underlying decision and outcome spaces. How much to order (decision) and how much

demand is later realized (outcome) can all be described in a one-dimensional, ordered

space, including a distance measure between and among actions and outcomes. Other

environments where preliminary information is exchanged are often more complex.

Consider the now common situation of a product development team that applies Con-

current Engineering, where multiple interdependent activities are performed in parallel to

shorten project lead time (e.g., Krishnan et al. 1997, Loch & Terwiesch 1998). Thus, one

subteam begins its work based on preliminary information from another subteam. The

decision of how much engineering e®ort to invest based on preliminary information has

similar features to forecast-sharing in a supply chain. However, this preliminary informa-

tion rarely exhibits the one-dimensional structure of existing Bayesian updating models.

This paper proposes a unifying framework of making decisions under preliminary informa-

tion and updating. Our analysis yields three important insights. First, building on work
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by Marschak & Radner (1972), we relax the assumption of a single, ordered dimension

of actions and outcomes to the more general topology of a sigma algebra that is re¯ned

over time. This allows for a whole array of new managerial applications, two of which we

discuss explicitly: product design and make-to-speci¯cation production.

Second, we show for a general probability space how the optimal response to prelimi-

nary information depends on the amount of information available as well as on the cost

functions.

Third, the structure of the underlying problem in°uences to what extent one should

commit to an action under preliminary information. In addition to the one-dimensional,

ordered structure of the newsvendor problem, we identify three other problem structures

frequently encountered in operations management: unstructured, decomposed and hierar-

chical. We also demonstrate how the traditional one-dimensional structure can be viewed

as a special case of our framework. Each problem structure can be modeled as a two-stage

stochastic dynamic programming problem. We solve each of these problems in closed

form, leading to a number of generic strategies of responding to preliminary information

(hedging, pipelining, postponement, templating).

The paper is organized as follows. We ¯rst review literature related to preliminary in-

formation, emphasizing the congruence between situations in supply chain management,

product development, and build-to-speci¯cation. Section 3 presents the general problem

formulation and our main theoretical result. Section 4 discusses speci¯c problem structures

and identi¯es managerial strategies of responding to preliminary information.

2 Literature

Figure 1: Making decisions under preliminary information
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Figure 1 illustrates the generic structure of decision-making under preliminary information.

Based on prior information, some actions can be carried out prior to receiving preliminary

information. At this point, costs are relatively low. Then the decision maker receives

preliminary information in the form of a signal about the ¯nal outcome. Using Bayesian

updating, she can revisit her initial decision set, possibly leading to additional action

at higher cost. Finally, the uncertainty is resolved and may reveal a mismatch between

actions and outcome. Corrective action at this point is the most expensive.

The Quick Response (QR) movement in the supply chain literature (Hammond 1990)

provides an example of this problem structure. A buyer (e.g. a fashion retailer) places

purchase orders over certain quantities to a manufacturer, prior to knowing market de-

mand. The uncertainty inherent in this decision forces the buyer to trade o® the cost of

ordering too much (leading to excess inventories and mark-downs) with the cost of order-

ing too little (lost opportunities of making a pro¯t). This decision can be modeled by the

classical \newsvendor" model (e.g., Nahmias 1993), extended to a series of information

exchanges, with repeated updating and re¯nement until the ¯nal purchase commitment.

Such a sequence of information exchanges allows the supply chain to delay the time of the

¯nal quantity commitment until additional demand information becomes available. This

is typically modeled as Bayesian updating (e.g., Cachon 1999). If the manufacturer is

sure of some portion of the overall demand and can, thus, produce it before the revised

forecast, production and shipment costs can be reduced. QR models with updating of

quantity forecasts have led to a number of powerful insights (e.g., Fisher and Raman 1996,

Donohue 1996, Eppen and Iyer 1997). These models rest on an important assumption:

the underlying decision space is one-dimensional, ordered, and that there exists a distance

measure between and among actions (how much to order) and outcomes (demand).

The concept of preliminary information is applicable to contexts other than supply chains.
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In°uential work by McCardle (1985) and McCardle & Lippman (1987) applied information

economics to R&D decisions with Bayesian updating of information about future pro¯ts.

They showed in a simple model that a better preliminary information (a sharper signal)

may delay the decision to adopt an innovation.

In the context of product development, Clark and Fujimoto (1989) demonstrated empiri-

cally that an early start of an information-receiving development activity reduces project

lead-time. This work has initiated widespread interest in the management of preliminary

information within the ¯eld of product development. For example, Krishnan et al. (1997)

operationalized preliminary information as the possible range of a design parameter (e.g.,

the depth of a door handle). The speed at which the parameter range can be narrowed,

together with the cost of responding to modi¯cations, in°uences how much design work

should proceed in parallel. Loch & Terwiesch (1998) modeled preliminary information as a

stream of engineering changes, explicitly including the increasing cost of action over time.

They derived the optimal starting point at which downstream should commence its work.

The fundamental di®erence between the information exchanged in product development

and in a supply chain lies in the topology of the underlying decision and outcome spaces.

Terwiesch et al. (1999) describe ¯ve cases of preliminary information sharing in an auto-

motive development project. In one case, the preliminary information is communicated

in form of an unordered set with just a handful of outcomes (e.g., di®erent con¯gurations

of an automotive climate control system). In other cases, the information resembles more

closely the postponement situation described by Lee & Tang (1997): some actions are

common over all scenarios and can thereby be executed early (at low cost), while others

require a complete resolution of uncertainty and are better delayed as much as possible.

Similarly, Cohen et al. (2000) describe the case of a semiconductor equipment manu-

facturer which builds equipment to order for a semiconductor manufacturer. While the
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interactions between the two parties again are similar to the QR situation, the preliminary

information exchanged is less about the (one-dimensional) order quantity, but more about

the (multi-dimensional) speci¯cation and con¯guration of the equipment. A large variety

of product con¯gurations, each of which is using di®erent sub-assemblies, forces the manu-

facturer to choose which (long lead-time) components to order from the 2nd tier supplier.

In many cases, the equipment manufacturer needs to make these sourcing decisions prior

to having a ¯rm purchase order or detailed speci¯cations. This requires trading o® the

cost of ordering sub-assemblies too late (after the ¯rm purchase order), in which case the

equipment lead-time lengthens, with the cost of ordering them too early, in which case

some sub-assemblies might be ordered but not used.

3 A General Model of Preliminary Information

We start the de¯nition of our model with a probability space (­;z; P ) summarizing all

possible events, or outcomes of the uncertainty, and the initial knowledge about the out-

come (such as the ¯nal demand for the newsvendor, the ultimately desired machine con-

¯guration in build-to-specs, or the ¯nal outcome of an upstream design activity). To keep

the structure of the model simple, we assume that z is countable. This is su±cient to

include both the newsvendor application and the product development applications, where

signi¯cant design alternatives are often discrete and ¯nite in number.

Let fAi; i = 1; :::g be the set of events generating z. We call these \basic"; they cannot be

further subdivided into distinguishable events. Analogous to Marschak & Radner (1972,

53 - 59), let ª ½ z be a \coarser" sigma ¯eld containing preliminary information about

the uncertain outcome. Within ª, a signal is conveyed after period one. Let fBi; i = 1; :::g

be the set of events generating ª. Unions of these basic events are the possible signals

that can be perceived as preliminary information. ª being coarser than z implies that
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any Bj must be the union of (one or) several Ai.

Figure 2: The general model

The sequence of actions is shown in detail in Figure 2. An action a1 2 z \addresses"

a certain set of possible events. In the example of Cohen et al. described above, an

action could describe one or more machine con¯gurations that the equipment manufacturer

decides to prepare for by ordering the corresponding sub-assemblies. Taking action a1 costs

c1 (a1). It is natural to normalize c1 (;) = 0 and to assume that the cost is non-decreasing

in the size of the set of addressed events:

Assumption 1: if G1 ½ G2 2 z, then c1 (G1) 6 c1 (G2) : (1)

In period 2 (after the signal), further events can be addressed in the form of action a2 2 z.

We assume that each event needs to be addressed only once, so we need to consider only

actions a2 \on top" of a1: a1 \ a2 = ;. Taking action a2 costs c2 (a1; a2). We take again

the cost of doing nothing as zero: c2 (a1; ;) = 0.

Assumption 2 : if G1 ½ G2 2 z, then c2 (a1; G1) 6 c2 (a1; G2) : (2)

It is again natural to assume that c2 is non-decreasing in a2 (the more events we address

in period 2, the more costly). Further, c2 is also and non-increasing in a1: the more events

have already been addressed in period 1, the easier it is to address events in period 2. If

there exists some similarity among actions, the inequality holds strictly, in absence of any

similarity (3) becomes an equality:

Assumption 3 : if G1 ½ G2 2 z, then c2 (G1; a2) ¸ c2 (G2; a2) : (3)

Finally, we assume that c2 is \bigger" than c1, that is, later actions are more costly. This

assumption avoids trivial cases, as otherwise there would be no reason at all to act in
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period 1 (a1 = ;):

Assumption 4 : for any A;G 2 z, c2 (A;G) ¸ c1 (G) : (4)

After the uncertainty has been resolved (after the event Ai containing ! has been identi-

¯ed), corrective action needs to be taken, or equivalently, a \shortage cost" c3 (a1 [ a2; Ai)

must be paid if the actually occurred event was not addressed by either a1 or a2. Thus,

we assume no extra \dismantling costs" at the end: c3 (a1 [ a2; Ai) = 0 if Ai ½ (a1 [ a2).

This cost structure is a generalization of the traditional cost for \wasted actions," c1(:)

and c2(:) corresponding to overage costs and c3 (:) to underage costs.

As before, we assume that the shortage cost is non-increasing in the set of events covered

(the corrective action might bene¯t from having something similar to build upon) and

\bigger" than the cost of addressing the event in the ¯rst place (this excludes the trivial

case where it is optimal to always wait until the end):

Assumption 5 : if G1 ½ G2 2 z, then c3 (G1; Ai) ¸ c3 (G2; Ai) for all Ai 2 z:(5)

Assumption 6 : for any G;Ai 2 z, c3 (G;Ai) ¸ c2 (G;Ai) (6)

The decision maker's problem is to address the uncertain event with minimum expected

cost. This corresponds to solving the dynamic program1

Min
a12z

c1(a1) + EB

�
Min
a22zna1

c2(a1; a2) + EAjB [c3(a1 [ a2; A)]
¸

This dynamic program builds on a long tradition of work on (discrete time) decision making

under uncertainty (e.g., Denardo 1982, Ch. 6, Heyman & Sobel 1984). The second period

decision a2(a1; B) minimizes:

a2(a1; B) = argmin
G

½
c2(a1; G) +

1

P (B)

Z

Ai½B
c3(a1 [G;Ai)P (Ai)

¾
: (7)

1As z is countable, one may equivalently write the integrals as sums.
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We refer to the resulting optimal second period cost as c¤2 (a1; B). Before the signal B is

observed, the period 1 decision a¤1 minimizes:

a¤1 = argmin
G

½
c1(G) +

Z

B2ª
c¤2 (a1; B)P (B)

¾
: (8)

In this dynamic programming formulation, the preliminary character of information is

captured by a less than perfect signal, i.e. ª being coarser than z. However, this pre-

liminary nature of information has a detrimental economic impact only if costs increase

over time, i.e. if waiting for the uncertainty resolution is more expensive than acting early

(c3 (G;A) > c2 (G
0; A) > c1 (A)). This is consistent with Marschak & Radner's (1972: 57)

statement that evaluating an information structure is impossible without specifying the

payo® structure. The fundamental trade-o® posed by preliminary information is between

the error from guessing and the cost of expensive delayed action.

In the presence of this trade-o®, there are three basic ways in which the decision maker

can react. She can either address a set of events immediately and then, in response to the

signal, address a di®erent set of events. We refer to this strategy as adaptive. She can

also try to address as many events as possible before it is known which one will actually

occur, a strategy we refer to as hedging. Finally, she can choose to wait, doing nothing

until more information is available.

These three strategies can, of course, be mixed. Our main Theorem below, characterizes

how the relative emphasis on these three strategies changes with the economic parameters

of the problem. To state the theorem, we must ¯rst introduce two additional structural

features of the costs. They are stated in the following two de¯nitions:

De¯nition 1 The cost c0(G;A) is uniformly increased with respect to c(G;A) if c0(G;A) =

® c(G;A) for some ® > 1 (and uniformly decreased is de¯ned analogously).

De¯nition 2 We say c2 (G;A) has decreasing increments if G1 ½ G2 2 z implies for any

basic event ¢: c2 (G1; A [¢)¡ c2 (G1; A) ¸ c2 (G2; A [¢)¡ c2 (G2; A) :
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Theorem 1 The relative importance of the three fundamental strategies hedging, adaptive,

and waiting, is in°uenced by information and cost structure as follows:

1. (hedging) If c3(G;A) increases uniformly, a
¤
1 and a

¤
2(a

¤
1; B) cannot decrease.

2. (adaptive response) If c2(G;A) decreases uniformly, and c2(G;A) and c3(G;A) have

decreasing increments, a¤1 cannot increase and a
¤
2(a

¤
1; B) cannot decrease.

3. (waiting) As the signal sigma-¯eld ª becomes ¯ner, a¤1 cannot increase.

PROOF: All proofs can be found in the appendix.

The theorem illuminates general e®ects of information and cost structure on the fundamen-

tal strategies of hedging, adaptive response, and waiting. We see that increasing mismatch

cost c3(G;A) lead to more action prior to the resolution of uncertainty (increases in a
¤
1

and a¤2(a
¤
1; B)), which corresponds to a hedging strategy. A reduction in the second period

cost of action, in contrast, provides an incentive of moving actions from period 1 to period

2, leading to a more adaptive strategy. Finally, waiting becomes more bene¯cial with an

increase in information content in the signal.

4 Speci¯c Problem Structures

Theorem 1 provides a fundamental result showing what in°uences to consider in dealing

with preliminary information. We now turn to four special cases of the overall optimization

problem (8). They re°ect more speci¯cally the concept of preliminary information as

encountered in product development and supply chain management. For each of the four

special cases of the general problem (ordered newsvendor, unstructured, decomposed, and

hierarchical), we derive the optimal policies and characterize the e®ect of preliminary

information more precisely.

10



4.1 Ordered Sets with Distance Measures

We express the two-period newsvendor problem with forecast updates (e.g. Donohue 1996)

in the framework set by Theorem 1. The set of basic events is Ai 2 f1; 2; 3; : : :g. The

period 1 action is the amount of early production, a1 2 f1; 2; 3; : : :g, at cost c1 per unit.

Period 2 actions are a2 2 f1; 2; 3; : : :g, at unit cost c2. If demand is D, the period 3

mismatch cost is c3 (D ¡ a1 ¡ a2)+ (c3 corresponds to the classical newsvendor \underage

cost"). The standard assumption (avoiding trivial cases) is c3 > c2 > c1.

Now, the sets of possible events are ordered and can be described by a distribution function.

Suppose that in period one, a signal y is observed about the demand x. Demand and signal

have a joint density f(x; y), the marginal densities are f1(x) and f2(y), and the conditional

density of demand given the signal is h (xj y) = f(x; y)f2(y). Denote the corresponding

distribution functions with the respective capital letters. Suppose that the signal y is

positively correlated with demand x such that a higher signal shifts probability mass

toward larger demand everywhere. This implies that H(Ajy) decreases in y for all A. In

this special case, Theorem 1 takes the following form.

Proposition 1 (ordered): In this newsvendor problem, it is optimal in the second period

to produce a2 = (A (y)¡ a1)+, where A (y) is de¯ned as

H(A(y)j y) = c3 ¡ c2
c3

: (9)

De¯ne y¤ (a1) by A (y¤) = a1. The optimal ¯rst period production is

c1 = c3 Pr fy 6 y¤ (a1) ; x > a1g+ c2 Pr fy > y¤ (a1)g : (10)

Let us consider a special case where we can explicitly calculate the impact of signal qual-

ity and updating. As in Fisher & Raman (1996), suppose that demand and signal are

characterized by a bivariate normal distribution with correlation ½ (this is only realistic
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if expected demand is high enough to make negative values in the model very unlikely).

Suppose without loss of generality that the signal has been \translated" in such a way

that ¹x = ¹y = ¹ and ¾x = ¾y = ¾. Then the conditional demand distribution, given the

signal y, is » N(¹+ ½[y ¡ ¹]; ¾
p
1¡ ½2) (Hogg & Craig 1978, 119).

We can now transform the distribution in second period condition (9) into the standard

normal:

©

Ã
a1¡¹¡ ½[y¤¡¹]
¾
p
1¡ ½2

!
=
c3 ¡ c2
c3

:

This implies directly that @y¤=@a1 = 1=½. In other words, if the ¯rst period production

increases by one, the signal that implies that this was the right decision goes up by 1=½. A

higher correlation coe±cient makes the second period decision less variable (as the signal

becomes more informative): @A(y)=@y = 1=½.

For 0 < ½ < 1, we can apply the implicit function theorem to the ¯rst order condi-

tion, characterizing the change of the ¯rst period decision with the signal quality ½. The

expression of @a1=@½ includes as a factor:

@2EC (a1)

@a1@½
=
@y¤

@½

�
c2f2 (y

¤)¡ c3
Z 1

x=a1

f (x; y¤) dx

¸
= 0 (11)

(by the same argument as in the Proof of Proposition 1). Thus, we ¯nd that in this special

case, the ¯rst period decision a1 is not in°uenced by the signal quality at all. The reaction

in the second period is improved, but does not shift the ¯rst period allocation. This

result remains valid if demand and signal have a bivariate log-normal distribution with

correlation ½ (avoiding the problem of possible negative demands). For the lognormal,

@y¤=@a1 = y¤=a1½, for which (11) continues to apply.

In the extreme cases of perfect or no preliminary information, in contrast, the ¯rst period

decision is a®ected: if the signal carries no information (½ = 0), there is no second period

production, and thus the ¯rst period decision must be increased to z2(a1) = (c3 ¡ c1)=c3.
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If, on the other hand, the signal is perfect (½ = 1), the second period reaction is capable

of preventing the mismatch cost c3 from ever being paid, and the ¯rst period decision can

be reduced to z2(a1) = (c2 ¡ c1)=c2:

4.2 Unstructured Problems and Hedging

The exchange of preliminary information is by no means restricted to ordered sets. Product

development situations in particular are characterized by preliminary information de¯ned

on a multi-dimensional design space, rather than on a one-dimensional quantity space.

Figure 3 provides an illustrative example, based on Terwiesch et al. (1999).

Figure 3: Example of the unstructured case

An automotive development team needs to decide which type of a heating system to include

in the vehicle. There are six options available (z has six basic events Ai). Typically,

heating system development is not on the critical path. Uncertainty about customer

preferences will be resolved through market research. Marketing will release preliminary

information in the form of a short list (B) by March. The ¯nal decision (Ai) is not known

before October. The development group can prepare for one or more of the six outcomes

by designing a system and an interface to the rest of the vehicle. If this process is started

early, the only cost is internal engineering capacity (c1(a1)). If the design is delayed until

March (when the short-list is available) the team reduces the risk of developing a concept

that is not desired by the market. However, the delayed start requires faster execution,

using external engineering capacity at higher cost (c2(a2)). If the design is delayed until

October, the team will bene¯t from the market research and need to design only a single

concept. However, this implies the risk that the heating system may delay the critical

path of the overall vehicle project, causing a more than tenfold cost increase (c3(:; :)).
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An important element of this design problem is that the cost of covering one outcome is

completely independent of covering other outcomes, i.e. covering basic event A1 does not

help in covering the occurrence of A2. Thus, there is a speci¯c action for each event. Then

the cost functions become additive over actions:

c1(a1) =
X

Ai2a1
c1(Ai); c2(a1; a2) =

X

Aj2a2
c2(Aj); c3 =

8
><
>:
0: if Ak 2 a1 [ a2

c3(a1 [ a2; Ak): otherwise
The cost of covering a set of events a2 in period 2 is independent of what events were

covered in period 1. As before, costs increase over time. No cost symmetry across actions

is required. In period 2, the decision maker receives a signal B, which allows updating of

the outcome probabilities. The optimization problem (8) then becomes:

Min
a12z

c1(a1) + EB

�
Min
a22zna1

c2(a2) + EAjB [c3(a1 [ a2; A)]
¸

Proposition 2 (unstructured): The optimal policy for an unstructured problem is:

a¤1 =

½
Ai 2 z: c1(Ai) 6

Z

B

min fc2(Ai); c3(Ai)P (AijB)gP (B)
¾

(12)

a¤2(a1; B) =

½
Ai 2 z; Ai =2 a1:

c2(Ai)

c3(Ai)P (AijB)
6 1

¾
(13)

Consistent with Theorem 1, a higher mismatch cost increases both a¤1 and a
¤
2(a1; B), and

a higher second period cost shifts some actions from after the signal to prior the signal.

A sharper signal reduces the cost of waiting for period 2 until taking action.

For the heating system development example, this result has several important conse-

quences. First, the higher the time pressure on the overall project (the cost of delaying

the critical path), the more actions one should move forward in time, even if they are

potentially wasted. We refer to this approach as hedging, as it protects the decision maker

from incurring the mismatch cost. Second, an increase in c2(Ak) leads to more action

prior to the signal. Finally, the fewer alternatives are included in the \short-list", the less

action should be carried out in period 1. A highly informative signal allows reacting more

e®ectively in period 2, reducing the risk of falling short.
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4.3 Decomposable Problem and Pipelining

Complex decisions, especially in the ¯eld of product development, can frequently be broken

up into two (or more) smaller problems that are tackled in parallel or in series. To capture

such decomposable problems, consider two separate domains, ­® and ­¯, each having

their respective sigma ¯elds of distinguishable events. Events in ­ are now a combination

(A®i ; A
¯
j )2 z®£z¯ = z®£¯. As in the general case, the decision maker can choose actions

a®t 2 z® and a
¯
t 2 z¯ (t = 1; 2), based either on her prior (t = 1) or on preliminary

information (t = 2).

Figure 4: Example of the decomposable case

Figure 4 illustrates the concept of decomposability. Consider a development team that

evaluates six suppliers for two components, a control unit with three potential suppliers

(de¯ning z®) and a ventilation unit with three di®erent suppliers (de¯ning z¯). Suppose

a supplier evaluation team with scarce capacity performs the selection sequentially, evalu-

ating the supplier for control unit ¯rst. The control unit supplier selection can be released

early (in form of B®) but carries no information about the best supplier choice for the

ventilation unit.

The chosen supplier installs a ¯rst testing tool-set in the plant to ¯ne-tune its performance.

As tool installation is on the critical path of the overall development project for both

components, the team considers tool installation in parallel to supplier selection. An

obvious improvement is to start with the control unit tool as soon as its supplier is selected

(rather than wait for the selection of the ventilation unit supplier). This method is referred

to as \task-pipelining" (Ulrich & Eppinger 1999, Krishnan et al. 19972). This rule of

thumb assumes that the ®-uncertainty is completely resolved in period 2, which is often

2The concept of pipelining can also be found as a command in the operating system UNIX, where a

\j" between two commands allows an early start of the second command.
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not the case.

In contrast to a hierarchical problem structure (considered in the next section), the deci-

sions in the two domains are independent: a decision in the ®¡domain has no impact on

the ¯¡domain and vice-versa. This allows the decision maker to choose actions from z®

and z¯ rather than from z®£¯3:

The uncertainty of one domain, say, domain ®, is reduced ¯rst (otherwise, we are back in

Section 4.2). Preliminary information arises in form of a signal B® 2 ª® ½ z®. De¯ne:

c®t (a
®
t ) =

X

A®2a®t

c®t (A
®); c¯t (a

¯
t ) =

X

A¯2a¯t

c¯t (A
¯); t = 1; 2

ct(at) = c®t (a
®
t ) + c

¯
t (a

¯
t )

c3(a1 [ a2; A) = c®3 (a
®
1 [ a®2 ; A®) + c¯3 (a¯1 [ a¯2 ; A¯)

Costs are again additive over events and actions, as well as over the two design domains,

z® and z¯, due to their independence. This creates the overall problem:

Min
ax12zx

X

x=®;¯

cx1(a
x
1) + EB®

"
Min
ax22zx

X

x=®;¯

cx2(a
x
2) + Exj B®

X

x=®;¯

cx3(a
x
1 [ ax2; Ax)

#
(14)

In addition to a separability of the cost functions, decomposability also leads to an in-

dependence of the probability structure: the signal B® carries no information about the

¯-event A¯. Thus, E¯j B® [c
¯
3 (a

¯
1 [ a¯2 ; A¯)] =

P
A¯ c

¯
3 (a

¯
1 [ a¯2 ; A¯) P (A¯).

Proposition 3 (decomposable): The optimal policy for a decomposable problem is:

a®¤1 =

½
A® 2 z®: c

®
1 (A

®) 6
Z

B®

min fc®2 (A®); c®3 (A®)P (A®jB®)gP (B®)
¾
;

a®¤2 (a
®
1 ; B®) =

½
A® 2 z® n a®1 :

c®2 (A
®)

c®3 (A
®)P (A®jB®)

6 1

¾
:

a¯¤1 =

(
A¯ 2 z¯ :

c¯1 (A
¯)

c¯3 (A
¯)P (A¯)

6 1

)
; a¯¤2 (a

¯
1 ; B®) = ;:

3This simpli¯es the problem substantially. Consider the case in which z® has 5 and z¯ 7 elements.

Choosing from z®£¯ would require a consideration of 5*7=35 elements. Choosing from z® and z¯

directly, though, only considers 5+7=12 elements (see Simon 1969, 206).
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Proposition 3 follows directly from treating both domains as separate unstructured prob-

lems. An ®¡event A® may best be addressed before or after the signal or after complete

uncertainty resolution, as in Proposition 2. The ¯¡action, in contrast, has no signal

(B® carries no information about A
¯), which makes any period 2 action senseless. Thus,

¯¡action should be carried out either immediately or after ¯nal uncertainty resolution.

Proposition 3 generalizes the idea of pipelining from a deterministic to a stochastic setting.

\Stochastic pipelining" has three important implications. First, the information concern-

ing the ®¡domain need not be 100% reliable: depending on the cost structure, even a

weaker signal may allow capturing some pipelining bene¯ts. Second, stochastic pipelining

can include an element of hedging (similar to the unstructured case): it is not the signal

alone that determines when it is optimal to execute an action, but a combination of the

signal and the cost structure (as we discuss following Proposition 2). Third, hedging in

the ¯¡domain may be optimal even without a signal, if early action is su±ciently cheap

and prior knowledge su±ciently sharp.

4.4 Hierarchical Problem Structures

A hierarchical problem involves again two types of actions and information, represented

by basic events in an ®¡domain and in a ¯¡domain. However, the two domains are now

dependent. Let the ¯¡decision be sequentially dependent on the ®¡decision. This has an

important consequence: while in the independent case, actions were chosen from either

z® or z¯, the choice A
¯ now \assumes" an element in the ®¡domain.

Figure 5: Example of the hierarchical case

This situation is illustrated by the example in Figure 5. A manufacturer of semiconductor

production equipment is expecting a customer order. The company produces two di®erent
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platforms, A and B, which are con¯gured and assembled to detailed customer speci¯ca-

tions. At the current time, it is uncertain which of the two platforms the customer will

pick. No ¯rm purchase order has yet been signed, and thus the customer may not order

at all. The purchase order includes a speci¯cation of the platform as well as a delivery

date (the ®-domain includes `no order', `platform 1', and `platform 2').

Each of the two platforms can be con¯gured in three di®erent ways, numbered 1-3 for A

and 4-6 for B. Thus, A¯ 2 f1; : : : ; 6g. No components are shared across platforms, i.e.,

building any given component \assumes" its platform (for example, building component

5 assumes that platform 2 has been ordered).

Despite signi¯cant lead-times for placing orders to their suppliers, the manufacturer works

without any sub-assemblies in inventory (as a result of high holding cost, due to expensive

components and fast obsolescence). Once the platform is known, the platform speci¯c

components can be ordered (a¯t is placed). In the spirit of postponement (see e.g. Lee

& Tang 1997), it is possible to delay orders for the speci¯c con¯guration until the full

speci¯cations are available.

All orders placed in the ¯rst period (prior to receiving the purchase order for the platform)

can follow the standard procurement process (leading to c1). If an order is placed later,

it has to be expedited, leading to increased shipping cost and a premium charge from the

supplier (c2). If the components are not procured on time, the promised shipment date is

at risk, leading to severe penalty charges (c3).

Sequential dependence allows us to de¯ne a set function f : z® ! z¯, with f(A
®) de¯ning

the set of ¯¡decisions compatible with a given A®. In the example, f (A) = f1; 2; 3g and

f (B) = f4; 5; 6g. Conversely, call f¡1
¡
A¯

¢
=

©
A®: A¯ 2 f (A®)

ª
the set of ®-decisions

implying A¯. If there is no component commonality each f¡1
¡
A¯

¢
has only one element:

in the example, f¡1 (5) = B.
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The joint prior probability measure has the structure P
¡
A®; A¯

¢
= 0 whenever A¯ =2

f(A®). The marginal probabilities become P (A®) =
P

A¯2f(A®) P
¡
A®; A¯

¢
, and P (A¯) =

P
A®2f¡1(A¯) P

¡
A®; A¯

¢
. As in the decomposable case, uncertainty related to ® is reduced

by a signal B 2 ª®. For example, the customer commits to an order, with penalties in

case of a cancellation, but does not yet indicate the platform. The signal B 2 ª® carries

less information for the ¯-choice: while P (A®j B) = P (A®) =P (B) if A® ½ B and zero

otherwise, we must write P (A¯j B) =P
A®½B\f¡1(A¯) P

¡
A®; A¯

¢
=P (B).

The decision maker may postpone the ¯¡decision, a¯1 , until more information is available.

After the signal B, one needs to consider only ¯¡choices in [A®½Bf(A®), or if one even

waits until period 3, both A® and A¯ 2 f(A®) are known. Alternatively, the decision

maker may also choose a¯1 before a signal is received. This might be bene¯cial if one has

su±cient \hope" that the outcome will con¯rm the chosen a¯1 .

Suppose for now that costs c®t (a
®
t ) and c

¯
t (a

¯
t ) are additive over the two domains. That is,

making an upstream choice a®1 does not reduce the component costs c
¯
t . This is realistic in a

con¯guration (as opposed to a new product development) problem, where the components

are known, and the question is picking the right combination of them. The resulting

optimization problem becomes:

Min
x2f®;¯g;ax12zx

X

x=®;¯

(
cx1(a

x
1) + EB

"
Min

ax22zxnax1
cx2(a

x
2) + ExjB [c

x
3(a

x
1 [ ax2 ; Ax)]

#)

This problem can be decomposed into ®- and ¯ parts as long as the costs are additive

across domains. Each corresponds to the unstructured problem analyzed earlier.

In general, however, we have to allow a certain downstream ¯¡decision to be common

across A®'s (f(A®1 ) \ f(A®2 ) 6= 0), thereby leading to a sub-additive cost structure. There

are also important cases with synergies among multiple ¯¡decisions for a given upstream

event ®. To understand how sub-additive cost structures in°uence the management of

preliminary information, we de¯ne the following.
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De¯nition: A problem exhibits downstream commonality if downstream actions are com-
mon across upstream events: across a set of upstream events fA®1 ; : : : ; A®ng ;there are down-

stream events A¯i 2 f (A®i ) for all i, such that c
¯
t

³S
i(A

¯
i )

´
<

P
i c
¯
t (A

¯
i ), t = 1; 2 (see

assumption 3). If there is an A
¯2 f (A®) for all A® (it needs to be chosen only once for

all possible upstream events) we refer to this as a universal downstream action.

De¯nition: A problem exhibits upstream synergy if downstream actions associated with
an upstream event have decreasing increments: there is an A® with a ¯-set G(A®) ½ f (A®)

such that c¯t

³S
A¯2G(A®)A

¯
´
<

P
A¯2G(A®) c

¯
t (A

¯), t = 1; 2. If costs are incurred only for

the ¯rst downstream action A¯, we refer to this as perfect synergy.

In both cases, the subadditivity applies only to periods 1 and 2 { the period 3 cost is a

\market penalty" de¯ned for one event that does occur without having been covered.

Insert Figure 6: Component commonality and platform synergy

Downstream commonality may make it attractive to take a downstream action prior to

the signal, despite the sequential dependence. Consider the case in which a new machine

needs to be installed in the factory (fab), including con¯guration and shipment of the

machine (upstream) and connecting the machine to various support systems, e.g. computer

networks, chemical supply pipes, and transportation devices (downstream). Downstream

commonality in this case implies that some of the activities related to the support systems

(e.g. installing the supply pipes) are independent of the con¯guration. One way to cut the

overall installation time is to build a template of the actual machine, an empty box with

the same external geometry and interfaces, and to connect this template to the rest of the

fab (thereby addressing a downstream event A¯ in period 1). Once the actual machine

arrives, it simply replaces the template, which is discarded or used for other installations.

Upstream synergy exists, if the sub-additive costs result within one upstream solution. For

example, Lee and Tang (1997) describe the case of a printer with a common platform for

various con¯gurations. This may make it optimal to postpone certain downstream activities
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until the detailed con¯guration is known (address all downstream events corresponding to

upstream event A® after A® is con¯rmed). Templating can be thought of as being the

\opposite" of postponement. Postponement starts upstream and delays the downstream

task, templating starts downstream before upstream.

Proposition 4 (hierarchical): (a) If the con¯guration space exhibits downstream com-
monality, then a¯2 , the set of events A

¯ covered in the second period, is as large or larger

compared to the situation without downstream commonality.

(b) If one downstream event A¯ is universal, a su±cient condition making templating of

A¯ optimal is: c1
³
A¯

´
6 c3

³
A¯

´
P

³
A¯

´
.

(c) If an upstream event A® exhibits upstream synergy, then a¯2 , the set of events A
¯ 2

f
³
A®

´
covered in the second period, is as large or larger compared to the situation without

upstream synergy.

(d) If an upstream event A® exhibits perfect synergy, a su±cient condition for optimal

postponement is: c¯2
¡
A¯

¢
>

R
A¯2f(A®) c

¯
3

¡
A¯

¢
P

³
A® j B

´
and c¯1

¡
A¯

¢
> c¯2

¡
A¯

¢
P

³
A®

´
.

5 Conclusion

Decision makers today rarely have the luxury of delaying their decisions until all of the

required information input has become available. Rather than waiting, it is often preferable

to make early decisions based on preliminary information and then adjust these decisions

as more information arrives. This trend towards using preliminary information has been

accelerated by recent advances in communication technologies. With the marginal cost

of information exchange approaching zero, it becomes economically bene¯cial to exchange

and update information earlier than before.

This paper proposes a generic model of the choices under preliminary information: early
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decisions at low cost but at a high risk of doing the \wrong thing," versus better informed

decisions at higher cost. We describe preliminary information in the form of a sigma

¯eld that is re¯ned over time. We are able to show several properties of optimally using

preliminary information under very general assumptions. Increasing mismatch costs lead

to more action prior to the resolution of uncertainty, a strategy we refer to as hedging.

A reduction in the second period cost of action, in contrast, leads to a more adaptive

strategy. An increase in information content in the signal, leads to a delay in action. This

fundamental result (Theorem 1) provides the answer to the question in our title (\Rush

and Be Wrong or Wait and Be Late?").

Preliminary information is common across applications in product development and sup-

ply chain management. We derive optimal policies for four special instances of the general

problem, ordered (newsvendor), unstructured, decomposed, and hierarchical. These op-

timal policies correspond to speci¯c strategies that have been discussed in literature and

applications. Hedging describes a strategy that starts several actions simultaneously, know-

ing that only one of them will ultimately be used. Stochastic pipelining can be used if the

incoming information can be decomposed, allowing for an early start of the ¯rst set of ac-

tions. Postponement delays downstream actions related to information that is anticipated

to come in late, while starting upstream actions early that are common across scenar-

ios. Finally, templating allows scenario-common downstream actions to start early (at low

cost), using a mock-up presentation of some upstream action. Our results generalize these

strategies to situations where they apply only \imperfectly", or stochastically.

Our model opens a new way of analyzing operations management decisions in response

to preliminary information. Several previous studies have recognized the importance of

information sharing in product development, but none has represented preliminary infor-

mation except via a one-dimensional parameter with a distribution function. In the ¯eld
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of supply chain management, previous studies have focused primarily on newsvendor-type

settings, avoiding more complex decision space topologies.

To conclude, we propose three promising directions of future research that build directly

on the ¯ndings presented here. First, the signal providing preliminary information is often

not exogenous, but rather the result of a costly action. For example, Fisher & Raman's

(1996) apparel company has to produce early in the season to get the bene¯t of the more

accurate early seasons sales forecast. Both our general model and the speci¯c problem

structures can be extended to account for such dependence.

Second, our model assumes that each possible outcome state de¯nes exactly one action,

over the set of which the decision maker chooses. However, there may be situations with

\°exible" actions. Uncertainty about the components required, the company needs to

decide what orders to place. If there are two possible outcomes for a speci¯c component

(required / not required), the ex-post optimal decisions are to either order or not order.

However, there might be a third possible action, to purchase an option for the component

(e.g., pay a fee to reserve a capacity slot). While this decision will never be optimal ex-

post, it may well be bene¯cial ex-ante (see, e.g., van Mieghem 1998). Such °exible actions

are not included in our current model formulation.

Finally, the wasted cost of addressing an event that ultimately does not occur can be

larger that just the cost of the action. For example, if a maker of stamping dies cuts o®

parts of the metal as a response to preliminary information, this does not only cost time

and e®ort, but might require a scrapping of the whole die if the information turns out to

be wrong. Including a cost of \undoing" an action may change the results of our model.

Both the product development literature and the supply chain literature list the manage-

ment and exchange of information as a research priority for the coming years. Yet, there

exists almost no overlap in citations or methodology across the two ¯elds. We hope that
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the model presented here can help to bring together these streams of research. Recog-

nizing structural similarities of the respective decision problems will allow a more general

analysis of the management of preliminary information in the future.
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6 Appendix

Proof of Theorem 1. To prove claim (1), we rewrite (8) more explicitly as: a¤1 minimizes

over possible x:

c1(x)+

Z

B2ª

�
c2 (x; a2 (x;B)) +

1

P (B)

Z

Ai½B
® c3(x [ a2 (x;B) ; Ai)P (Ai)

¸
P (B) :

Because of the multiplication of c3 by ®, the value of adding some Aj to (x [ a2) increases.

Therefore, the optimal x will not decrease and, as this (weakly) decreases the second
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period costs and its increments (assumption 3 and decreasing increments), a2 (a
¤
1; B) does

not decrease (or possibly increases). This proves claim (1).

To prove claim (2), we rewrite (8) again, this time with the new period 2 costs. a¤1

minimizes:

c1(x)+

Z

B2ª

�
® c2 (x; a2 (x;B)) +

1

P (B)

Z

Ai½B
c3(x [ a2 (x;B) ; Ai)P (Ai)

¸
P (B) :

The multiplication of c2 by ® increases the bene¯t both of reducing a2 or increasing x.

If a2 is reduced, c3(x [ a2; Ai) grows, and thus by decreasing increments, the value of

increasing x increases. Thus, the optimal x does not shrink. If, in turn, x is increased,

the bene¯t of reducing a2 grows because of decreasing increments (it reduces c2 more and

increases c3 less). Thus, the optimal a2 does not grow. This proves claim (2).

Turning to claim (3), observe ¯rst that c¤2 (a1; B), the second period cost that is minimized

by a2(a1; B), is non-increasing in a1 because both cost arguments weakly decrease in a1.

Observe also the following lemmas:

Lemma 1. If ª1 ½ ª2;
R
B2ª1 c

¤
2 (a1; B)P (B) ¸

R
G2ª2 c

¤
2 (a1; G)P (G) :

Proof of Lemma 1. ª1 ½ ª2 means that any B 2 ª1 ful¯lls B = G1 [ G2, both

in ª2 (one of the two may be the null set). Suppose WLOG that all ª1 sets and ª2

sets are the same, B
0
= G

0
, except for one B = G1 [ G2. The for all other sets B0

,

c¤2
¡
a1; B

0¢
= c¤2

¡
a1; G

0¢
. But on set B, by the fact that one can optimize on G1 and G2

separately:

c¤2 (a1; B) = minx

½
c2(a1; x) +

1

P (B)

Z

Ai½B
c3(a1 [ x;Ai)P (Ai)

¾

¸
X

j=1;2

P (Gj)

P (B)
minyj

(
c2(a1; yj) +

1

P (Gj)

Z

Ai½Gj
c3(a1 [ yj; Ai)P (Ai)

)

=

Z

G=G1;G2

c¤2 (a1; G)P (G): This proves Lemma 1.¤
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Lemma 2. An increase in a1 has a lower bene¯t if the signal comes from a ¯ner sigma

¯eld: If ª1 ½ ª2; then for all ¢ 2 z :

R
B2ª1 [c

¤
2 (a1; B)¡ c¤2 (a1 [¢; B)]P (B) ¸

R
G2ª2 [c

¤
2 (a1; G)¡ c¤2 (a1 [¢; G)]P (G) :

Proof of Lemma 2. We can rearrange the terms as
R
B2ª1 c

¤
2 (a1; B)P (B)¡

R
G2ª2 c

¤
2 (a1; G)P (G) ¸

R
B2ª1 c

¤
2 (a1 [¢; B)P (B) ¡

R
G2ª2 c

¤
2 (a1 [¢; G)P (G) ; and we know both sides of this

expression are positive by Lemma 1. The fact that the right hand side of this inequality

is smaller follows from the assumption of decreasing increments of c2 (¢) (the algebraic

details are omitted). This proves Lemma 2.¤

The Theorem follows directly. From (8) and Lemma 2, the bene¯t of increasing a1 is

smaller in the ¯ner sigma ¯eld ª2, and therefore a
¤
1 can only decrease and not increase.¤

Proof of Proposition 1. The expected cost period 2 cost, given a1 and y, is

EC (a2) = c2a2 + c3

Z 1

z=a1+a2

(z ¡ a1 ¡ a2) h (zj y) f (z) dz;

which can be di®erentiated with respect to a2, yielding (9) as a ¯rst order condition. It

can easily be checked that EC (a2) is convex. The solution A (y) is unique (the numerator

grows in A (y) while the right hand side is constant and < 1). Furthermore, the ¯rst order

condition (9) together with the assumption that H(Ajy) decreases in y implies that A(y)

increases in y. This, in turn, implies that y¤ (a1) increases in a1. The ¯rst period cost

resulting from choosing a1 is:

EC (a1) = c1a1+ c3

1Z

y=0

1Z

x=Maxfa1;A(y)g

(x¡Maxfa1; A(y)g) h(yj x) f2 (y) dx dy

+ c2

1Z

y=y¤(a1)

[A (y)¡a1] f2 (y) dy:

The ¯rst derivative of EC (a1) is c1 ¡ c3
R y¤(a1)
y=0

R1
x=a1

f (x; y) dx dy ¡ c2
R1
y=y¤(a1)

f2 (y) dy,

which can be written as (10) when set to zero. The second derivative shows that the ¯rst
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period cost is convex:

@2EC (a1)

@a21
= c3

Z y¤

y=0

f (a1; y) dy +
@y¤

@a1

�
c2f2 (y

¤)¡ c3
Z 1

x=a1

f (x; y¤) dx

¸

= c3

Z y¤

y=0

f (a1; y) dy + c3
@y¤

@a1

�
c2¡c3
c3

f2 (y
¤) +

Z a1

x=0

f (x; y¤) dx

¸

(by 9) = c3

Z y¤

y=0

f (a1; y) dy + c3
@y¤

@a1

�
¡

Z a1

x=0

h (xj y¤) f2 (y¤) dx+
Z a1

x=0

f (x; y¤) dx

¸

= c3

Z y¤

y=0

f (a1; y) dy > 0: ¤

Proof of Proposition 2. To ¯nd the optimal policy for this decision problem, we ¯rst

consider the situation after having received the preliminary information. The expected

cost for choosing a2 given a1 and B can be written as:

EC(a2; B) =
X

Ai2a2
c2(Ai) +

1

P (B)

Z

Aj2B\ac2
c3(a1 [ a2; Aj)P (B)

including the cost of action and the updated expectation of the action falling short. For

any event Ak =2 a1, adding Ak to a2 will change the expected cost EC(a2):

¢EC : c2(Ak)¡
1

P (B)
c3(Ak)P (Ak)

(!)

6 0 () c2(Ak)

c3(Ak)P (AkjB)
(!)

6 1

which de¯nes the optimal second period policy a¤2(a1; B) as stated above.

The ¯rst period cost include three elements, the cost of action in the ¯rst period, the cost

action in the second period that will be invested for certain signals B and the expected

cost of mismatch, given a¤2(a1; B):

EC(a1) =
X

Ai2a1
c1(Ai) +

Z

B

2
4 X

Aj2a¤2(a1;B)
c2(Aj) +

1

P (B)

X

Aj2B;Aj =2a¤2(a1;B)
c3(Aj)P (Aj)

3
5P (B)

Again, we look at the cost of adding Ak, this time to a1:

¢EC : c1(Ak)¡
Z

B

�
IfAk chosen in period 2gc2(Ak) + (1¡ IfAk chosen in period 2g)

c3(Ak)P (Ak)

P (B)

¸
P (B)

The ¯rst term in the integral captures the expected cost savings of moving Ak from period

1 to period 2 and the second term captures the savings in expected mismatch cost. ¤
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Proof of Proposition 3. For each domain separately, the problem can be treated as

a special case of Proposition 2. For the ¯¡domain, the signal contains no information

because the domains are independent. ¤

Proof of Proposition 4. Consider downstream commonality ¯rst. The condition for

choosing a downstream event in the second period is given by (13). Subadditivity of the

cost c2 implies that the numerator decreases, rendering the condition less stringent and

possibly leading to an increase of a2. We note here that the set of ¯-events addressed

in period 1 may increase or decrease, depending on whether c1 or c2 exhibit stronger

subadditivity (see Equation 12).

If a downstream event A¯ exhibits perfect commonality, its cost is zero in period 2 if

it has been included in period 1. Thus, in period 1, condition (12) becomes c¯1 (A
¯) 6

R
B
min

n
c¯2 (A

¯); c¯3 (A
¯)P (A¯ jB)

o
P (B). To consider a su±cient condition, suppose that

c3 is always the minimum in the integral (c¯2 is by Assumption 4 larger than c
¯
1 ; taking

c¯3 P (A
¯ jB) as the minimum is, therefore, stricter). As f¡1

³
A¯

´
= ­®, this becomes

c¯1 (A
¯) 6 c¯3 (A

¯)P (A¯).

Next, consider upstream synergy. Again, the condition for a¯2 is given by (13). Subaddi-

tivity of the cost c2 decreases the numerator, rendering the condition less stringent.

In the special case where the synergy is perfect on upstream event A®, the optimal policy

is as follows. If this ¯rst component has been produced in period 1, the optimal policy

in period 2 is to produce all others. If it has not been produced in period 1, production

in period 2 is optimal if its cost is lower than the expected mismatch cost, according to

(13). Thus, it is optimal to wait if the ¯rst condition in the proposition holds. Immediate

production of the ¯rst component, thus, avoids all period 2 costs and is worthwhile if it is

cheaper than the expected mismatch cost. This corresponds to the second condition. ¤
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