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Toward Intelligent Assistance for a
Data Mining Process: An Ontology-Based
Approach for Cost-Sensitive Classification

Abraham Bernstein, Foster Provost, and Shawndra Hill

Abstract—A data mining (DM) process involves multiple stages. A simple, but typical, process might include preprocessing data,
applying a data mining algorithm, and postprocessing the mining results. There are many possible choices for each stage, and only
some combinations are valid. Because of the large space and nontrivial interactions, both novices and data mining specialists need
assistance in composing and selecting DM processes. Extending notions developed for statistical expert systems we present a
prototype Intelligent Discovery Assistant (IDA), which provides users with 1) systematic enumerations of valid DM processes, in order
that important, potentially fruitful options are not overlooked, and 2) effective rankings of these valid processes by different criteria, to
facilitate the choice of DM processes to execute. We use the prototype to show that an IDA can indeed provide useful enumerations
and effective rankings in the context of simple classification processes. We discuss how an IDA could be an important tool for
knowledge sharing among a team of data miners. Finally, we illustrate the claims with a demonstration of cost-sensitive classification
using a more complicated process and data from the 1998 KDDCUP competition.

Index Terms—Cost-sensitive learning, data mining, data mining process, intelligent assistants, knowledge discovery, knowledge

discovery process, machine learning, metalearning.

1 INTRODUCTION

KNOWLEDGE discovery from data is the result of an
exploratory process involving the application of var-
ious algorithmic procedures for manipulating data, build-
ing models from data, and manipulating the models. The
Knowledge Discovery (KD) process [1] is one of the central
notions of the field of Knowledge Discovery and Data
mining (KDD). The KD process deserves more attention
from the research community: processes comprise multiple
algorithmic components, which interact in nontrivial ways.
Even data mining specialists are not familiar with the full
range of components, let alone the vast design space of
possible processes. Therefore, both novices and data mining
specialists are apt to overlook useful instances of the
KD process. We consider tools that will help data miners
to navigate the space of KD processes systematically, and
more effectively. In particular, this paper focuses on a
subset of stages of the KD process—those stages for which
there are multiple algorithm components that can apply; we
will call this a data mining (DM) process (to distinguish it
from the larger knowledge discovery process). For most of
this paper, we consider a prototypical DM process template,
similar to the one described by Fayyad et al. [1] and
Chapman et al. [2], which is shown in Fig. 1. We concentrate
our work here on three DM-process stages: automated
preprocessing of data, application of induction algorithms,
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and automated postprocessing of models. We have chosen
this set of steps because, individually, they are relatively
well understood—and they can be applied to a wide variety
of benchmark data sets.! In the final case study, we expand
our view to a more involved DM process.

Fig. 2 shows three simple, example DM processes.
Process 1 comprises simply the application of a decision-
tree inducer. Process 2 preprocesses the data by discretizing
numeric attributes, and then builds a naive Bayesian
classifier. Process 3 preprocesses the data first by taking a
random subsample, then applies discretization, and then
builds a naive Bayesian classifier. Descriptions of all of the
techniques can be found in a data mining textbook [5].

Consider an intelligent assistant (an intelligent discovery
assistant, or IDA) that helps a data miner with the
exploration of the space of valid DM processes. A wvalid
DM process violates no fundamental constraints of its
constituent techniques. For example, consider an imple-
mentation of a naive Bayesian classifier that applies only to
categorical attributes.” If an input data set contains numeric
attributes, simply applying this classifier is not a valid DM
process. However, Process 2 is valid, because it prepro-
cesses the data with a discretization routine, transforming
the numeric attributes to categorical ones.

1. More generally, because we will assemble these components
automatically into complete processes that can be executed by a user, the
scope of our investigation is necessarily limited to KD-process stages for
which there exist automated components, and for which their requirements
and functions can be specified. Important but ill-understood stages, such as
“business process analysis” or “management of discovered knowledge,” are
not included [3]. We also do not consider intelligent support for more open-
ended, statistical/exploratory data analysis, as has been addressed by St.
Amant and Cohen [4].

2. The naive Bayesian approach generally allows induction for data
containing continuous attributes. However, treatment varies by implemen-
tation. For this paper (partially for demonstration), we will assume an
implementation of naive Bayes that does not aloow continuous variable
without preprocessing.

Published by the IEEE Computer Society
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Fig. 2. Three valid DM processes.

‘ Data Mining Operators ‘

| —

Pre-Processing ‘

Induction Algorithm

‘ ‘ Post-Processing

instances (with target) 1
Preconditions:
Continuous Data i
Incompatibilites:
<none>
Effects:
add: Categorical Data
remove:
Heuristic Indicators:
Speed = + 20

Effects:

Continucus Data

class probability estimator
Preconditions:

Not (Continuocus Data)
Incompatibilites:

op (inducer)

add: op (inducer)
Heuristic Indicators:
Speed = + 30

Fe c4 | C |
Ry _ . ) 1 Ry . Ry
Discretize Naive bayes Tree Pruning
Input: Input: Input:
instances (with target) instances (with target) Decisicn tree
Output: Output: Output:

Decision tree
Preconditions:

Tree
Incompatibilites:

<none>
Effects:

add: Model Size small
Heuristic Indicators:

Speed = - 10

Fig. 3. Simplified elements of a DM ontology.

An automated system can take advantage of an explicit
ontology of data mining techniques, which defines the
various techniques and their properties. The IDA deter-
mines characteristics of the data and of the desired mining
result, and uses the ontology to search for and enumerate
the DM processes that are valid for producing the desired
result from the given data. Each search operator corre-
sponds to the inclusion in the DM process of a different data
mining technique; preconditions constrain its applicability
and there are effects of applying it. Fig. 3 shows some
simplified ontology entries. The IDA also assists the user in
choosing processes to execute, for example, by ranking the
processes (heuristically) according to what is important to
the user. The ranking shown in Fig. 2 (based on the number
of techniques that form the plan) would be useful if the user
were interested in minimizing fuss. Another user may want
to minimize runtime. In that case, the reverse of the ranking
shown in Fig. 2 would be better. Other ranking criteria are
accuracy, cost sensitivity, comprehensibility, etc., and
combinations thereof.

We claim that such a system can provide users with two
main benefits:

1. a systematic enumeration of valid DM processes, so
users do not miss important, potentially fruitful
options, and

2. effective rankings of these valid processes by
different criteria, to help users choose between the
options.

We also assert that an ontology-based IDA provides an
infrastructure for sharing knowledge about data mining
processes, which can lead to what economists call network
externalities. We do not provide experimental support for
this third hypothesis, but argue that behavioral research in
the area of knowledge sharing has shown such effects in
analogous applications.

We support the first claim by presenting in detail the
design of an effective IDA for cost-sensitive classification,
including a working prototype, describing how valid plans
are enumerated based on an ontology that specifies the
characteristics of the various component techniques. We
show plans that the prototype produces, and argue that
they would be useful not only to novices, but even to expert
data miners. We provide support for the second claim with
an experimental study, using ranking heuristics. Although
we do not claim to give an in-depth treatment of ranking
methods, we demonstrate the ability of the IDA prototype
to rank potential processes by speed and by accuracy (both
of which can be assessed objectively) and by combinations
of the two, in the context of a classification task. Finally, we
provide additional support for all the claims with an
empirical demonstration, using the KDDCUP 1998 data
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Fig. 4. The overall process followed by an IDA.

mining problem, showing how an IDA can take advantage
of knowledge about a problem-specific DM process.

2 MoTIVATION AND GENERAL PROCEDURE

When engaged in design activities, people rarely explore
the entire design space [6]. When confronted with a new
problem, data miners, even data mining experts, often do
not explore the design space of DM processes thoroughly.
For example, the ACM SIGKDD Conference holds an
annual competition, in which a never-before-seen data set
is released to the community and teams of researchers
and practitioners compete to discover knowledge from
the data. KDDCUP-2000 received 30 entrants (teams)
attempting to mine knowledge from electronic-commerce
data. As reported by Kohavi et al. [7], most types of data
mining algorithm were tried by only a small fraction of
participants.

Expert data miners may ignore many data mining
approaches because they do not have access to the tools;
however, readily and freely available data mining toolkits
make this reason suspect. More likely, experts simply do
not use many data mining tools—especially tools that
require additional pre and postprocessing or those requir-
ing complicated procedures for installation or execution
(e.g., complicated parameter tweaking). Indeed, the only
algorithm that was tried by more than 20 percent of the
KDDCUP-2000 participants was decision-tree induction,
which often performs reasonably well with no tweaking
and with little pre/postprocessing.

The overall metaprocess followed by our IDA is shown
in Fig. 4. The user provides data, metadata, goals, and
desiderata. Then, the IDA composes the set of valid
DM processes, according to the constraints imposed by
the user inputs, the data, and/or the ontology. This
composition involves choosing induction algorithm(s),
and appropriate pre and postprocessing modules (as well
as other aspects of the process, not considered in this
paper). Next, the IDA ranks the suitable processes into a
suggested order based on the user’s desiderata. The user
can select plans from the suggestion list, hopefully aided by
the ranking. Finally, the IDA will produce code for and can
execute (automatically) the suggested processes on the
selected data.

3 ENUMERATING VALID DATA MINING PROCESSES

Our first claim is that an ontology-based IDA can
enumerate DM processes useful to a data miner. We

support our claim in two ways. First, we describe how the
ontology can enable the composition of only valid plans.
Second, we describe process instances produced by our
prototype (called IDEA), in order to provide evidence that
they can be nontrivial. Later, we will describe how problem-
specific elements can be incorporated into an IDA; for
clarity and generality, first, we concentrate on domain-
independent elements of the DM process. For example,
when presented with a data set to mine, a knowledge-
discovery worker (researcher or practitioner) generally is
faced with a confusing array of choices [5]: Should I use
C4.5 or naive Bayes or a neural network? Should I use
discretization? If so, with what method? Should I sub-
sample? Should I prune? How do I take into account costs
of misclassification?

3.1 An Ontology-Based Intelligent Discovery

Assistant

Consider an example: A user presents a large data set,
including both numeric and categorical data, and specifies
classification as the learning task, along with the appropriate
dependent variable. The IDA asks the user to specify his/
her desired tradeoffs between accuracy and speed of
learning. Then, the IDA determines which DM processes
are appropriate. For our example task, decision-tree learn-
ing alone might be appropriate. Or, a decision-tree learner
plus subsampling as a preprocess, or plus pruning as a
postprocess, or plus both. Are naive Bayes or neural
networks appropriate for this example? Perhaps not by
themselves. Not if the naive Bayes implementation accepts
only categorical attributes. Neural networks often accept
only numeric attributes. However, preprocessing to trans-
form the attribute type may enable their use.

The IDA uses the ontology to assist the user in
composing valid and useful DM processes. Basing our
design on Al planning [8] and semantic Web services [9],
the prototype’s ontology contains for each operator:

e a specification of the conditions under which the
operator can be applied, including a precondition on
the state of the DM process, its compatibility with
preceding operators, and the inputs necessary for
the execution of the algorithm,

e a specification of the operator’s effects on the
DM process’s state and on the data,

e estimations of the operator’s effects on attributes
such as speed, accuracy, model comprehensibility,
etc. (shown as heuristic indicators in Fig. 3), and

e a help function to obtain comprehensible informa-
tion about each of the operators.
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Fig. 5. The data mining ontology (partial view, the italicized leaf nodes were used in the ranking experiments).

In addition, the ontology contains schemata for generic
problems such as target marketing. The schemata are
represented internally as complex, decomposable operators
with the same parameters as their simple counterparts. The
only difference is that some of the steps within the complex
operators might not be completely specified, opening a
design space of subsolutions (Section 5 provides an
example). The collection of all schemata is a case-base of
processes thought or proven to be useful.

Fig. 5 shows a structural view of the prototype ontology,
which, at the highest level, groups the DM operators into:
preprocessing, induction, and postprocessing. Each group
is further subdivided. At the leaves of this tree are the actual
operators (selected examples chosen from Weka [5] are
shown italicized). We constructed this prototype ontology
by first considering the types of operators provided by data
mining toolkits such as Weka [5]. We chose the three stages
of the data mining process that have received the most
automation—resulting in a nontrivial selection of operators.
We then divided these into subcategories, focusing on
operators that would be useful for cost-sensitive classifica-
tion. Finally, we chose implementations that were available
in Weka. After the ontological structure was in place, we
called on our own knowledge to provide the operator
specifics (preconditions, postconditions, etc., discussed
above). Obviously, this ontology is not complete, even for
cost-sensitive learning, and is limited by our knowledge. All
of this was done before the experiments below were
conducted, except as mentioned.

Based on the prototype ontology, we built a prototype
IDA, which we call IDEA (Intelligent Discovery Electronic
Assistant). Following our general framework for IDAs (see
Fig. 4), IDEA first gathers a task specification for the
DM process, analyzes the data that the user wishes to mine
and extracts the relevant metadata, such as the types of
attributes included (e.g., continuous, categorical). Using a
GUI, the user then can complement the gathered informa-
tion with additional knowledge about the data, and can
specify the goal of data mining. IDEA’s first core compo-
nent, the DM-process planner, produces the set of valid
processes and is described in Section 3.2.

A collection of valid DM processes typically will contain
processes that are undesirable for certain user goals—e.g.,
sacrificing too much accuracy to obtain a model fast. IDEA’s
second core component, the heuristic ranker, ranks the valid
DM processes using a combination of several heuristic
functions. The GUI also allows the user: to specify tradeoffs
(weights) between ranking functions, to sort the list of plans
using any (weighted combination) of the rankings, to
examine the details of any process plan, and to generate
code for and to run the processes.

A final function of IDEA is to supply users with an
interface to the ontology. Users can browse ontology entries
with a tree-like hierarchy browser. To add new operators to
the ontology requires adding a new element in the ontology
tree and specifying its parameters. When adding the Weka
ID3 tree-induction operator, for example, the user would
first choose Decision Tree as an appropriate parent in the
ontology. Then, the user would proceed to add the
appropriate parameters. As a child of Decision Tree, the
new ID3 operator would inherit some parameter values.
The user must complement these parameters with the
actual algorithm implementation, its call interface (for
Weka’s ID3: java-class weka.classifiers.trees.Id3 with the
relevant method calls or a reference to a WSDL? file), and
the heuristic parameters (such as Speed = + 25).

3.2 Enumerating Valid DM Processes: IDEA’s
Procedure

An IDA can produce a systematic enumeration of
DM processes that will be useful to data miners, to help
them avoid overlooking important processes. To enumer-
ate (only) valid DM processes, IDEA performs a search of
the space of processes defined by the ontology, con-
strained by the restrictions on operator application
defined in the ontology. The structure of the search
problem is amenable to more complex, Al-style planning,
but for the results we present, a straightforward search
was sufficient. IDEA constructs a specification of the
sequence of DM operators (i.e.,, the DM process) that

3. WSDL (Web Services Description Language) is an XML format for
describing Web services (or remote procedures), providing all information
necessary to locate and call the service [10].
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moves from the start state—the metadata description of
the data set—to the goal state—typically, a prediction
model with some desired properties. Starting with an
empty process, at every state, it finds the applicable
operators using the compatibilities, adds each operator
(separately) to the partial process that brought it to the
current state, and transforms the state using the oper-
ator’s effects. Using the example above, in order to apply
naive Bayes, the current state must not contain numeric
attributes, which would be the case after discretization.
The planner would not apply discretization twice because
after the first application, the state no longer would
contain numeric attributes and, thus, the preconditions of
discretization no longer would apply. The planner stops
pursuing a given process when it has reached either the
goal state or some “dead-end” state that will not lead to
the goal state. The planner also can add complex operator
schemata to any solution. Akin to hierarchical planning, it
then must revisit all the nonspecified steps and treat them
as planning problems themselves (see Section 5 for an
example). The central difference from traditional, Al
planning is that execution does not stop when a first
viable solution is found. Instead, the search returns as
many valid processes as possible, to aid users who are
not able to express their preferences precisely or
completely before seeing possible alternatives.

The constraints in the ontology are essential. If we use the
ontology whose overall structure is shown in Fig. 5, give the
goal of classification, and constrain the search only with the
ordering of the logical groupings imposed by the prototype
ontology (i.e., preprocessing precedes induction which
precedes postprocessing), IDEA generates 163,840 DM
processes. Adding the constraints imposed by the pre and
postconditions of the operators (for example, neural net-
works require numeric attributes; decision-tree pruning can
only apply to decision trees, etc.) IDEA produces 597 valid
process instances—less than one-half of one percent of the
size of the unconstrained enumeration. Adding metadata
(e.g., the data set contains numeric attributes) or user
desiderata (e.g., the user wants cost-sensitive classification)
allows the enumeration to be constrained even further.

3.3 Enumerating Valid DM Processes: Example
Enumerations from IDEA

The enumerations of processes produced by IDEA are not

trivial. In many cases, they would be valuable not only to

novice data miners, but even to experts.

Example 1. When IDEA is given the goal of producing a
cost-sensitive classifier for a two-class problem, it produces
an enumeration comprising 189 DM processes. The
enumeration includes building a class-probability esti-
mator and setting a cost-specific threshold on the output
probability. It includes building a regression model and
determining (empirically) an effective threshold on the
output score. The enumeration also includes using class-
stratified sampling with any classification algorithm
(which transforms an error-minimizing classifier into a
cost-minimizing classifier). Novice data miners certainly
do not consider all these options when approaching a
cost-sensitive problem. In fact, we are aware of no single

published research paper on cost-sensitive learning that
considers one of each of these types of option [11].

Example 2. When we give IDEA the goal of producing
comprehensible classifiers, the top-ranked DM process is:

[subsample the instanceg| =

[feature selection >

luse a rule learner] >

prune the resultant rule set]

Although comprehensibility is a goal of much machine-
learning research, we are not aware of this process being
used or suggested. This process is interesting because
each component individually has been shown to yield
more comprehensible models; why shouldn’t the com-
position yield even more comprehensible models? As
another DM process highly ranked by comprehensibility,
IDEA suggests:

build a decision tree >

lconvert tree to ruleg =2

prune rule set.

This also is a nontrivial suggestion: It is the process
introduced by Quinlan [12] and shown to produce a
combination of comprehensibility and high accuracy.
Although the addition to the ontology of

lconvert tree to rulesg

was influenced by Quinlan’s work, we did not “pro-
gram” the system to produce this process. IDEA
composed and ranked processes based on knowledge
of individual operators. This is particularly valuable
because the addition of a new operator to the ontology
can have far-reaching effects.

Example 3. Consider the case where the user is interested in
classification, but wants to get results fast. Does IDEA’s
enumeration contain particularly useful (fast) processes?
Indeed, it suggests processes that use fast induction
algorithms, such as C4.5 (shown to be very fast for
memory-resident data, as compared to a wide variety of
other induction algorithms [13]). It also produces
suggestions not commonly considered [14]. For example,
the enumeration contains plans that use discretization as
a preprocess. Research has shown that discretization as a
preprocess can produce classifiers with comparable
accuracy to induction without the preprocess [15]; but
with discretization, many induction algorithms run
much faster. For example, as described by Provost and
Kolluri [16], most decision tree inducers repeatedly sort
numeric attributes, increasing the computational com-
plexity considerably; discretization eliminates the repe-
titive sorting. IDEA’s suggestions of fast plans also
include plans that use subsampling as a preprocess.
Researchers studying scaling up often do not consider
subsampling explicitly, but, of course, it produces
classifiers much faster—and, for large data sets, it may
produce classifiers with comparable accuracies [17], [18].
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TABLE 1
Sixteen Process Plans and Ranking
steps heuristic rank
(operator sequence) | oredit-g | composition Legend for operators used in plans
speed speed

Plan # 1 Jc4.5 13 13 abbrev. |name/algorithm
Plan # 2 _Jpart 16 16 rs Random sampling (result
Plan # 3 |rs, c4.5 2 5 instances = 10% of input inst.)
Plan # 4 |rs, part 8.5 10 X L L .
Plan#5 [bd, c45 2 > fbd  Fixed-bin discretization (10 bins)
Plan # 6 |fbd, part 15 14 cbd Class-based discretization
Plan # 7 |cbd, c4.5 11 12 (Fayyad & Irani's [1993] MDL)
Plan # 8 |cbd, part 14 15 45 C4.5 (using Witten & Frank's
Plan # 9 [rs, fbd, c4.5 4 3 ’ [2000] J48 implementation)
Plan # 10 |rs, fbd, part 6.5 8 Rule learner (PART, Frank &
Plan # 11 |rs, cbd, c4.5 5 2 Part  \yitien [1998])
Plan # 12 |rs, cbd, part 6.5 9 b Naive Bayes (John & Langley
Plan # 13 |fbd, nb, cpe 8.5 6 [1995])
E::E Z 1; (r:sbdfb[(;bn(t:)p?:pe 110 Z cpe  CPE-thresholding post-processor
Plan # 16 |rs, cbd, nb, cpe 3 2

Each plan is specified as the sequence of its composing steps (shown as operator abbreviations).

4 |IDAs CAN Probuck EFFECTIVE RANKINGS

Large enumerations of DM processes can be unwieldy. It is
important to help the user to choose from among the
candidate processes. Rankings of DM processes can be
produced in a variety of ways. For example, static rankings
of processes for different criteria could be stored in the
system. Flexible rankings also are important—so that as
new ontological knowledge is added, the system can take
advantage of it immediately. IDEA produces rankings
dynamically by composing the effects of individual
operators. The ontology contains estimations of the effects
of each operator on each goal. For example, an induction
algorithm may be estimated to have a particular speed
(relative to the other algorithms). Taking a 10 percent
random sample of the data as a preprocess might be
specified to reduce the runtime by a factor of 10 (which
would be appropriate for algorithms for which runtime
grows linearly with the amount of data). Correspondingly,
sampling might be specified to reduce the accuracy by a
certain factor (on average), and to increase the comprehen-
sibility by a different factor (compare the study by Oates
and Jensen [17]). For a given DM process plan, an overall
score is produced as the composition of the functions of the
component operators.

4.1 Details of Ranking Experiments

In order to provide a demonstration that IDAs can produce
useful rankings, we coupled IDEA with a code generator that
generates code for the Weka data mining toolkit* [5]. The
system generates Java code for executing the plans, as well as
code for evaluating the resulting models based on accuracy
and speed of learning. We assess IDEA’s ability to rank
processes by speed and by accuracy because these are criteria

4. The choice of Weka was driven by the availability of a large number of
suitable machine learning operators. Weka does have the drawback that, for
the most part, it operates on in-memory structures making it unsuitable for
exploration of some realistic large-scale data sets. In particular, the
preprocessing steps, which often entail accessing large databases, should
be handled a suitable database environment or within a full-scale data
mining preprocessing environment like Mining Mart [19].

of general interest to users and for which there are well-
accepted evaluation metrics. Furthermore, one expects a
rough trade off between speed and accuracy [13], and a user
of an IDA may be interested in points between the extremes.

For the demonstrations in this section, we restricted the
ontology to a subset for which it is feasible to study an
entire enumeration of plans thoroughly. The ontology
subset uses seven common preprocessing, postprocessing,
and induction techniques (for which there were appropriate
functions in Weka, see below). The experimental task is to
build a classifier, and has as its start state a data set
containing at least one numeric attribute (which renders some
inducers inapplicable without preprocessing). Table 1
shows on the left the list of 16 valid process plans IDEA
created for this problem; on the right is a legend describing
the seven operators used.” Even this small ontology
produces an interesting variety of DM-process plans. For
example, the ontology specifies that naive Bayes only
considers categorical attributes, so the planner needs® to
include a preprocessor that transforms the data. Although
the ontology for the experiments is very small, the diversity
of plans is greater than in many research papers.

In Table 1, the first column ranks the plans by the
number of operators in the plan. This may be interesting
to users who will be executing plans manually, who may
be interested in minimizing fuss. We will not consider
this ranking further except to reference plans by number.
The heuristic rank columns of Table 1 show a pair of
speed-based rankings computed by heuristics. The “cred-
it-g” ranking is a static ranking created by running all the
plans on one, randomly selected data set (viz., credit-g,
not used for testing). A static ranking makes practical
sense if the flexibility to add new operators is not of
primary importance. Adding new operators (or otherwise

5. The last operator in Table 1, cpe, which places an appropriate
threshold on a class-probability estimator, becomes a no-op for Naive Bayes
(nb) in the Weka implementation, because Weka’s implementation of nb
thresholds automatically.

6. This is not strictly true for the Weka implementation, for which naive
Bayes is augmented with a density estimator for processing numeric
attributes. The Weka implementation could be considered naive Bayes plus
a particular numeric preprocessor.
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TABLE 2
Data Set Names and Sizes

[Dataset name|  Size

heart-h 294
heart-c 303
ionosphere 351
balance-scale 625
credit-a 690
diabetes 768
vehicle 846
anneal 898
vowel 990
credit-g 1000
segment 2310
move 3029
dna 3186
gene 3190
adult10 3256
hypothyroid 3772
sick 3772
waveform-500Q 5000
page 5473
optdigits 5620
insurance 9822
letter 20000
adult 32561

changing the ontology) changes the space of plans, in
which case a static ranking would have to be updated or
recomputed. The “composition” ranking was generated
by a functional composition; the ontology specifies a base
accuracy and speed for each learner, and specifies that all
the preprocessing operators will reduce accuracy and will
increase speed, by different amounts. The heuristic
functions are subjective, based on our experience with
the different data mining techniques and on our reading
of the literature (e.g., [13]). The ranking functions were
fixed before we began using Weka’s particular imple-
mentations, with one exception: Because speeds differ
markedly by implementation, we ran Weka on one data
set (credit-g, again) to instantiate the base speed for the
learning algorithms and the improvement factors for
sampling and for discretization.

Our experiments compare the proposed (ex ante)
rankings to (ex post) rankings generated by actually
running the plans on the data sets. For the experiments,
we used 23 data sets from the UCI Repository [20], each
containing at least one numeric attribute. The data sets and
their total sizes are listed in Table 2. Unless otherwise
specified, for each experiment, we partitioned each data set
randomly into halves (we will refer to these subsets as D,
and Dj). We used 10-fold crossvalidation within D, to
compute average classification accuracies and average
speeds—which then are used to construct the actual (ex-
post) rankings and to assess the quality of the ex-ante
rankings. (We will use the D;s, later, to construct auto-
experimentation rankings; the {D;, D} partitioning ensures
that all results are comparable.)

4.2 Ranking by Speed

Our first experiments examine whether the heuristics can be
effective for ranking DM processes by speed. Since being
able to rank well by speed is most important for larger data
sets, consider the largest of our data sets: adult. Table 3

TABLE 3
Adult Data Set Rankings by Speed

credit-g | composition | D2 ("actual”)

Plan Harme ranking ranking ranking

Plan # 2 16 16 16
Plan # 6 15 14 15
Plan # 8 14 15 14
Plan # 1 13 13 13
Plan # 7 11 12 12
Plan # 4 9 10 11
Plan # 5 12 11 10
Plan # 14 10 7 9
Plan # 10 7 8 8
Plan # 12 7 9 7
Plan # 3 2 5 6
Plan # 13 9 6 5
Plan # 11 5 4 4
Plan # 9 4 3 3
Plan # 16 3 2 2
Plan # 15 1 1 1

shows the two heuristic rankings and the actual (ex-post)
ranking based on the average runtimes for all the plans. The
table is sorted by the actual ranking, and the table entries
are the positions of each plan in each ranking (i.e., 1 is the
first plan in a ranking, 2 the next, etc.). Both heuristics rank
very well. For the credit-g ranking (on the adult data set)
Spearman’s rank-correlation r; = 0.93 and for the composi-
tion ranking, ry = 0.98 (recall that perfect rank correlation is
1, no correlation is 0, and a perfectly inverted ranking is -1).

Table 4 shows for all the domains the correlations
between the rankings produced by the heuristics and the
rankings based on the actual speeds. Here, the data sets are
presented in order of increasing size (large ones toward the
bottom). Highlighted in bold are the cases where ry > 0.5
(all but the smallest data set).” Neither heuristic is superior,
but both are effective; for both ranking heuristics, the
average is approximately ry = 0.85.

4.3 Ranking by Accuracy—Using
Autoexperimentation

Our next demonstration examines whether the IDA can be
effective for ranking DM processes by accuracy. Note that
one would not expect to be able to do nearly as well at this
task as for ranking by speed. Nevertheless, it would be
helpful to be able to give users guidance in this regard,
especially when a system proposes a process containing a
component with which the user is not familiar—if the
process were ranked highly by accuracy, it would justify
learning about this new component. However, our attempt
to use heuristic scores, similar to those that were successful
for ranking by speed, did not produce particularly good
accuracy rankings. Fortunately, an IDA can perform
autoexperimentation, composing process plans and running
its own experiments to produce a ranking of the plans by
accuracy.® Although this may be the best possible ranking

7. The choice of 0.5 was ad hoc, but was chosen before running the
experiment. Examining hand-crafted rankings with various r, values
seemed to indicate that 0.5 gave rankings that looked good.

8. This is not an option for speed rankings because the autoexperimenta-
tion process itself may be (very) time consuming.
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TABLE 4
Spearman’s r, for Ranking Heuristics for Speed and Accuracy

speed accuracy
credit-g ranking Gompositian kil
ranking experiment.

heart-h 0.39 0.30 -0.06
heart-c 0.62 0.59 0.06
ionosphere 0.80 0.70 0.20
balance-scale 0.82 0.81 0.55
credit-a 0.94 0.91 0.71
diabetes 0.55 0.64 0.49
vehicle 0.94 0.95 0.91
anneal 0.98 0.92 0.90
vowel 0.90 0.93 0.90
segment 0.89 0.92 0.92
move 0.90 0.95 0.87
dna 0.98 0.94 0.91
gene 0.92 0.95 0.88
adult10 0.97 0.97 0.86
hypothyroid 0.95 0.91 0.96
sick 0.95 0.89 0.18
waveform-5000 0.90 0.94 0.94
page 0.86 0.85 0.74
optdigits 0.89 0.87 0.84
insurance 0.95 0.93 0.84
letter 0.90 0.96 0.96
adult 0.93 0.98 0.86
mean 0.86 0.85 0.70
median 0.90 0.92 0.86

method (albeit time consuming), even careful experimental
evaluations of the accuracies of predictive models produce
only estimations of the accuracy of the models on unseen
data. The quality of the rankings of DM processes produced
by such estimation will vary (e.g., by data set size), and for
any particular domain must be determined empirically.
We now present an experiment to assess the effective-
ness of such a procedure. For each domain, IDEA composed
DM process plans and generated Weka code for the plans
and for their evaluations via crossvalidation. For each data
set, the crossvalidation was performed on data subset D, to
produce an estimation of the accuracy that would result
from running the plan on a data set from the domain. These
accuracies were used to construct a ranking of the
DM-process plans by accuracy for each data set. These
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rankings then were compared to the ranking produced on
data set D, (identically to the previous experiments). Table 4
lists the resulting rank correlations in the rightmost column.
As expected, the empirically determined rankings are
considerably better for the larger data sets: averaged r
0.86 for the data sets with >= 5,000 records.

4.4 Trading Off Speed and Accuracy

For large data sets autoexperimentation provides good
accuracy rankings, but one pays a considerable runtime
price as the data set size grows. What if a user is willing to
trade off some speed for a better accuracy ranking, but does
not have the time for full-blown autoexperimentation (i.e.,
running all the plans on all the data)? An alternative is to
perform autoexperimentation on subsamples of the data to
estimate the accuracy ranking for the full data set. We now
demonstrate that our IDA can allow users to trade off
quality of ranking for timeliness.

IDEA ran the process plans for the six largest data sets
(each having 5,000 or more total records) on increasingly
larger subsets of the data. Specifically, for each domain’s D,
we selected random subsets of 10%,20%,...,100% of the
data. For each subset, IDEA performed crossvalidation to
determine empirically an expected accuracy ranking, identi-
cally to the previous experiment. For this experiment, we
consider only the eight DM-process plans that do not
(already) contain random sampling. Fig. 6 plots the rank
correlations as the size of the sample grows, and in bold
shows the average rank correlation as size grows. As
expected, the largest samples give better rankings than the
smallest ones. For the 100 percent sample, all are above 0.5,
and all but optdigits are above 0.8. On the other hand, for
several of the data sets (page, adult, letter) the rankings with
the 10 percent sample are not much better than random.

With one notable exception, the rank correlations become
relatively stable when about half of the data have been seen.
The optdigits curve is unusual: The rank correlations do not
increase and do not become more stable as more data are
used. Investigation shows that all methods perform so
similarly relative to each other, even with small training sets
(optdigits is “too easy,” it turns out), that it is not possible to
rank them meaningfully beyond a certain level. Of course, if
all methods perform identically, then the ordering of the
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ranking does not matter. Fig. 6 also graphs the average
without the optdigits data (bold and marked with a <),
showing that the average performance is as desired
(generally increasing, but with decreasing marginal bene-
fits). That is, IDEA can perform autoexperimentation with
sampling to produce good ranking estimates.

In sum, the results in this section demonstrate that it is
possible for an IDA to produce effective rankings of
generated processes by different desiderata (speed and
accuracy), and to produce rankings that make tradeoffs
between the two.

5 DEMONSTRATION WITH A MORE ComMmPLEX DM
PROCESS

We now present the results of a final set of experiments, to
demonstrate further the power of IDAs. The prototypical
DM-process template that we used for the discussions and
experiments above was straightforward. However, in real-
world situations, the DM process can be more complex [21].
We assert that in such cases the potential value of an IDA is
even greater because there is greater need for expertise in
technique and process.

The data we use for our demonstration were the subject
of the 1998 KDDCUP. The rationale for choosing the
KDDCUP 1998 data set was threefold. First, the data set
highlights the strengths of the planning-and-ranking ap-
proach: the combination of human insight about the
problem and machine support for the systematic explora-
tion of the design space. Second, it allows us to show the
applicability of IDEA in the context of a more complex, cost-
sensitive learning problem, rather than the straightforward
classification problem used for the previous demonstra-
tions. Finally, the data set has already been preprocessed
extensively, making it suitable for our prototype, which
concentrates on the building of the classification model, not
on feature construction and selection. Even with the
extensive preprocessing, the KDDCUP 1998 problem is
not trivial.

The KDDCUP 1998 problem was to select a subset of
customers to whom to mail solicitations, in order to
maximize profit (revenues minus the cost of mailing).
Participants built models from the training data, using a
wide variety of different methods. To determine the
winners, the organizers evaluated (on a separate test set
for which the true answers were hidden) how much profit
each team’s model would have garnered. More specifically,
KDDCUP 1998 was based on data from a fund-raising
campaign undertaken by a national veterans association.
The customer base was a set of individuals who donated in
prior campaigns, and the goal was to select those from
whom to solicit donations in the current campaign. Each
observation in the data set represents an individual, and
includes (for example) the response to the prior campaign.
The training set from the competition consists of 95,412 re-
cords and the test set consists of 96,367 records. The mailing
cost is $0.68 and the average donation is $15.60 with a range
of $1-$200. The donation frequency is approximately
5 percent of the population. Using the default strategy of
mailing to everyone, the average profit over the test set is

TABLE 5
Results of 1998 KDDCUP

||=Participants Profit %Gain

Urban Science $14,712 39.32
SAS $14,662 38.84
#3 $13,954 32.14
#4 $13,825 30.92
#5 $13,794 30.63
#6 $13,598 28.77
#7 $13,040 23.48
#8 $12,298 16.46
#9 $11,423 8.17
#10 $11,276 6.78
#11 $10,720 1.52
#12 $10,706 1.38
#13 $10,112 -4.24
#14 $10,049 -4.84
#15 $9,741 -7.76
#16 $9,464 -10.38
#17 $5,683 -46.18
#18 $5,484 -48.07
#19 $1,925 -81.77
#20 $1,706 -83.84
#21 ($54) -100.51

$10,560. The (actual) results of KDDCUP 1998 are presented
in Table 5. For our experiment, we use the variables used by
Zadrozny and Elkan [22].

This was a challenging competition: the spread between
the different competitors is quite large. Nine of 21 entries
produced lower profits than did the default strategy of
mailing to everyone. The last-place entry actually lost
money. The winners achieved a 39 percent increase in profit
over the default strategy. The winners are experts in this
sort of data mining: Urban Science specializes in building
models for target marketing (and, in fact, they also won the
1997 KDDCUP). In second place is SAS, who also have
extensive experience with this sort of modeling. The
competitors with the lower scores most likely applied data
mining tools in the manner typical of data mining/
machine-learning research. As we will demonstrate, the
straightforward application of existing tools is insufficient for
high-level performance on these data. However, the
inclusion of application-specific, data mining-process
knowledge is. As we will show, it is essential for IDEA to
incorporate application-specific process knowledge. First,
let us consider how IDEA performs without doing so.

We followed a methodology intended to mimic the
algorithmic portion (i.e., not including feature construction
and selection) of the process that KDDCUP competitors
would have taken. Specifically, we create rankings of
DM processes considering only the training set (estimating
the profit that would be obtained). To assess the quality of a
ranking, we calculate the “actual” profits on the test set. The
1998 KDDCUP focused on a problem of cost-sensitive
classification: classify into one of two categories, solicit or
do not, taking into account the cost of false positives (the
mailing costs) and the cost of false negatives (the lost
revenue). We use a larger set of induction algorithms than
in the experiments above, but for clarity, for this experiment
we do not consider pre and postprocessing explicitly.
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Process NN: [Create dummies| > [Neural Network] > [Classification by regression]

Process Lin: [Create dummies = [Linear Regression| = [Classification by regression|

Process Log(CPE): [Create dummies| - [Logistic Regression(CPE)| = [CPE-Threshholding]

Process NB(CPE): [Discretization] > [Naive Bayes (CPE)| - |CPE-Threshholding]

Process Rule(CPE): [Rule Learner(CPE)] >

[CPE-Threshholding|

Process DT(CPE): [Decision Tree(CPE)| = [CPE-Threshholding|

Fig. 7. DM processes generated for cost-sensitive classification.

Fig. 7 shows six DM processes generated for cost-
sensitive classification. As mentioned above, a wider
variety of learning algorithms (from Weka) is used here,
and only one process with each algorithm is generated.
Specifically, the first two processes produce regression
models: process “NN” is the application of a neural
network learner and process “Lin” is the application of
linear regression. As mentioned in Section 3.3, regression
models can be converted to cost-sensitive classification
models by a postprocessor that chooses (by experimenting
with the training data) an appropriate threshold on the
predicted (output) value (“classification by regression”).
Both of these algorithms require categorical variables to be
preprocessed into a set of binary “dummy” variables. The
last four processes use algorithms that create “class
probability estimators,” which give an estimation of the
probability that a new example belongs to the class in
question (“will donate”). Such a model can be converted to
a cost-sensitive classifier with a postprocessor that chooses
a threshold decision-theoretically, taking into account the
misclassification costs. Process Log (CPE) uses logistic
regression, which also requires preprocessing of categorical
variables into dummies. Process NB(CPE) uses naive Bayes,
for which discretization is used as a preprocess. Processes
Rule (CPE) and DT (CPE) build rule-based and decision-
tree models, respectively; these do not require the pre-
processing of numeric or categorical variables.

Table 6 shows the ranking of these processes by
estimated profit, the actual profit calculated on the test
set, and the resulting percentage gain over the default
strategy of mailing to everyone. The profit was estimated by
autoexperimentation (using crossvalidation, as above) on
the training data. Note that, except for the neural network
classifier, the ranking by estimated profit is perfect.

Unfortunately, even without the error, the procedure would
have placed only ninth (of 21) in the competition. What’s
worse, only one of the processes actually beats the default
strategy of mailing to everyone. To be fair, this was a
difficult problem for data miners not familiar with model-
ing for problems such as target marketing. Indeed, the
participants in the contest were serious data mining
researchers and tool vendors, and only half were able to
do significantly better than the default strategy.

What did the winner(s) do differently? They did not use
more complicated mining algorithms. Rather, they used a
different DM process, one that is known by specialists to be
particularly effective for target marketing. Specifically, as
shown in Fig. 8, a class probability estimator (CPE) is built
to estimate the probability of donation; separately, a
regression model is built (from the donors in the training
set) to estimate the amount to be donated conditioned on
the presence of a donation. These two models are used in
combination: the product of the two, for any individual,
estimates his/her expected donation. If the expected
donation is greater than the cost of the promotion to that
individual, in this case $0.68, then a mailing should be sent.
Otherwise, it should not.

Such process knowledge, in this case about how to
combine techniques to form effective special-purpose
DM processes, can be added to an IDA’s ontology by
specialists—subsequently to be brought to bear by others.
The specialists can simply add the target marketing process
as a problem-solving schema to the ontology. Note that
there still is a large degree of freedom, even given such a
process template. What type of learner should be used for
class-probability estimation? What type of regressor? What
type of pre/postprocessing is required? Using hierarchical
planning, the IDA constructs DM processes within the

TABLE 6
Process Plans Ranked by Estimated Profit, Showing Actual Profit and Gain over Default Strategy
[ Plan  JRank] Profit %Gain |Lige“d iy L

acronym |name/algorithm

"N‘N 1 $6.919 -34.48f DT Decision Tree
[lLin 2 $11,968 13.33 Log Logistic Regression
[IlLog(CPE) 3 $10,520 -0.371 |NB Naive Bayes
[[Rule(CPE) 4 $9,924 -6.02 Rule Rule Learner
[NB(CPE) 5 $9,538 -9.68] [in Linear Regression
([DT(CPE) 6 $8,496 -19.54] |NN Neural Network
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Fig. 8. Target marketing process.

constraints imposed by this template, in addition to the
simpler, default template (which we used in previous
sections).

For our final experiment, in addition to the six process
plans based on the default (linear) DM process template,
using the target-marketing template produces eight addi-
tional plans: the cross product of the available CPE learners
(four) and the available regression learners (two). All the
plans then are ranked by their estimated profit, produced
via cross-alidation on the training set. If one plan were to be
submitted to a contest such as the KDDCUP competition, it
would be the highest-ranking plan. Of course, we have the
luxury of examining the entire list.

The 14 process plans, ranked by crossvalidated estimated
profit, are listed in Table 7 along with their test-set profits
and the percentage gain (loss) over the default mailing
strategy. The estimated ranking reflects the actual profit
ranking quite well (with a couple notable glitches; Spear-
man’s ry = 0.80). Indeed, the range of gains is remarkably
similar to the actual ranking of submissions to the contest
(note that we excluded processes such as: (just) build a
simple decision tree, which produces zero profit). The top-
ranked plans indeed are competitive with the winners’
submissions. The penultimate plan is the one used by the
winning submission, and performs comparably in terms of
profit. We did not expect the IDA to perform this well,
because we figured SAS and Urban Science must have left
some tricks up their sleeves (e.g., proprietary twists on the

modeling algorithms). The top-ranked process actually
would have beaten the winning submission.

These results illustrate not only the power of the IDA
generally to enumerate and to rank processes effectively, but
also the power of the IDA as a knowledge-sharing device. If
one specialist includes knowledge about the target-market-
ing process, and another includes knowledge about neural
networks, and yet another includes knowledge about
logistic regression, other users would benefit from the
IDA’s composition of these to form a top-performing DM
process.

6 RELATED WORK

An IDA provides users with nontrivial, personalized
“catalogs” of valid DM-processes, tailored to their task at
hand, and helps them to choose among these processes in
order to analyze their data. We know of little work that
directly studies IDAs for the overall DM-process, although
some have argued that they are important [23], [24]. There
is, however, quite a long tradition of work that addresses
some of the same goals (such as recommending and
ranking) or using similar techniques (e.g., planning, auto-
experimentation, and the use of ontologies) for recommend-
ing and for ranking individual induction algorithms.

6.1 The Use of IDAs

Especially in the European community, researchers have
argued for the importance of IDAs. Morik [24], for example,

TABLE 7
Process Plans Ranked by Estimated Profit, Showing Actual Profit and Gain over Default Strategy
| Plan Rank | Actual Profit | %Gain |
[Log(CPE) + NN 1 $14,914 41.23
[ILog(CPE) + Lin 2 $14,778 39.95
[[Rule(CPE) + NN 3 13,672 29.47|
[Rule(CPE) + Lin 4 13,456 27.42
[DT(CPE) + NN 5 $11,055 4.69
[INN - 6 $6,919 -34.48] [Legend for operators used in plans
[DT(CPE) + Lin 7 $10,843 2.68)  lacronym [name/algorithm
flLin 8 $11,968 1333 DT Decision Tree
[Log(CPE) 9 10,520 -0.37] Log Logistic Regression
[NB(CPE) + NN 10 10,070 464 [NB Naive Bayes
[[RULE(CPE) 11 $9,924 -6.02|| [Rule Rule Learner
[NB(CPE) 12 $9,538 -9.68 Lin Linear Regression
"NB(CPE) +Lin 13 $10,113 423 NN Neural Network
DT(CPE) 14 $8,496 -19.54]  [cPE Class Prob. Estimator
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proposes the use of a case-based repository to store
successful chains of preprocessing operators.” Since pre-
processing chains are partial DM processes, the insights
gained should complement our work and, ideally, could be
integrated with a system such as IDEA. The MetaL project'”
has as one of its foci IDA-like systems; we are not aware of
any existing system that uses background knowledge and/
or experimentation to compose and rank DM processes,
although Brazdil argues that it is important to do so [23].

The only implemented IDA-like system we are aware of
was presented by Engels et al, who describe a user-
guidance module for DM processes called CITRUS [25],
[26], [27], [28]. In particular, the user-guidance module uses
a task/method decomposition [29] to guide the user
through a stepwise refinement of a high-level DM process,
in order to help the user to construct the best plan using a
limited model of operations. Finished plans are compiled
into scripts for execution. The system is implemented by
extending SPSS Inc.’s Clementine® system, which provides
a visual interface to construct DM-processes manually.

This work is similar to our approach as it provides the
user with assistance when constructing DM processes, and
uses Al planning techniques. In contrast, our approach is
based on two notions that have led us in a different
direction. First, even with a well-specified goal, it is very
difficult to discern the one best plan because the results of
running data mining methods are difficult to predict.
Second, users’ goals and desired tradeoffs often cannot be
specified easily or completely at the onset of an investiga-
tion. This is because many desiderata are tacit and difficult
to specify precisely (e.g., one may have an aversion to
certain representations, based on experience with the
domain experts). Moreover, knowledge discovery is an
exploratory process; users must be given as much flexibility
as possible. An IDA presents the user with many valid
plans to choose from and helps him/her to choose among
them, via rankings based on different criteria (and on
combinations thereof). The user has no obligation to choose
the highest-ranked plan in any given ranking—all of the
plans in the ranking will be valid.

Akin to the approach of Engels and colleagues, Buntine
et al. [30] introduce a method that generates data-analysis
programs using program synthesis based on a declarative
specification of the data-analysis problem. The declarative
specification is a generalized Bayesian network. This
approach is similar to ours in that it composes new
knowledge discovery programs from a declarative problem
specification. It differs from our approach in that it attempts
to synthesize the one best program for data analysis (based
on an optimization specification), rather than to provide the
user with a series of options and help with choosing among
them. The use of a deductive reasoning system for process
synthesis is attractive because it allows guiding the
planning process using new declarations rather than
changing the planner.

9. See http://www-ai.cs.uni-dortmund.de/FORSCHUNG/PROJEKTE/
MININGMART/index.eng.html.

10. Metal. stands for “MetaLearning,” the process of learning
models of the performance of learning algorithms as a function of
characteristics of data sets; see http://www.cs.bris.ac.uk/Research/
MachineLearning/metal.html.

6.2 Projects with Related Goals: Recommending
and Ranking

A variety of research projects address issues regarding
recommending/selecting optimal induction algorithms
(rather than processes) and ranking induction algorithms.
The knowledge generated from such projects could help to
populate an IDA’s ontology, as well as to inform the
construction of more advanced functions for ranking
processes. The MLT-Consultant [31] was an early system.
It used a MYCIN-style knowledge base [32] with a
Hypertext-based GUI to recommend to a user an algorithm
to choose (from a machine-learning library). Several projects
have since studied the selection of individual induction
algorithms or subcomponents of algorithms based on
certain forms of background knowledge. For example,
Brodley [33] chooses subcomponents to form a hybrid
decision tree, based on expert knowledge of algorithm
applicability. The StatLog project'' [34] investigated which
induction algorithms to use given particular circumstances.
Brazdil et al. [35], Gama and Brazdil [36], and others, use
metarules drawn from experimental studies, to help predict
which algorithms will be better; the rules consider measur-
able characteristics of the data (e.g., number of cases,
number of attributes, kurtosis). This notion of “metalearn-
ing” is the basis for the Metal. project, mentioned above.
Finally, Hilario and Kalousis [37] use a case-based system to
advise users regarding which induction algorithm (and its
respective parameter settings) to choose given a particular
data mining task. Knowledge about the relationships
between techniques and characteristics of data sets would
fit well with the general notion of IDAs, but we have not
(yet) incorporated any.

A different tradition of metalevel systems for data mining
[38], sometimes called “automatic bias selection,” involves
the selection of one of the following, based in part on feedback
from the performance of the learner: vocabulary terms, the
induction algorithm itself, components of the induction
algorithm, parameters to the induction algorithm [39]. Bias-
selection work generally assumes the goal is accuracy
maximization, but also applies to other desiderata [40], [41].

Addressing the need for improved ranking methods,
several research projects have studied the use of experi-
mental comparison to rank individual induction algo-
rithms. Brazdil [23] summarizes some prior methods. This
work is closely related to our ranking of DM processes
(especially since one may put a conceptual box around a
DM process and call it an induction algorithm, although
this obscures important issues regarding the composition of
processes). Brazdil and Soares have studied the ranking of
individual induction algorithms, based on (functions of)
their performances on previously seen data sets [42], [43].
They compare various methods for ranking, which perform
comparably, and they consider ranking combining accuracy
and speed.

6.3 Projects Using Similar Techniques:
Landmarking, Planning, Knowledge
Management, and Ontologies

As we have seen, many of the component methods

necessary for building IDAs have been the subject of

recent study. Several researchers have studied the notion of
using fast processes (of different sorts) to help estimate the

11. See http://www.ncc.up.pt/liacc/ML/statlog/index.html.
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performance of less efficient ones. Pfahringer et al. [44] and
Fiurnkranz and Petrak [45] provide overviews of such
“landmarking” techniques. In particular, Petrak [46] shows
the effectiveness of using subsamples from the data set in
question to predict which learning algorithm will yield the
lowest error on the entire data set; the technique works
remarkably well—although it should be noted that for
large data sets often one can achieve high accuracy with a
surprisingly small subset of the data (compare progressive
sampling [14]). On the other hand, the relative perfor-
mance of algorithms can change markedly with the
amount of data [18].

Statistical expert systems (compare [47], [48]) provide
statistical advice. Most of the systems we are aware of base
their advice on a statistical strategy, which is defined by
Olford and Peters [49] as “... the reasoning used by the
experienced statistician in the course of analysis of some
aspect of a substantive statistical problem” (p. 337).
Typically, those strategies are hand-coded to contain the
multiple analysis alternatives of different problems such as
regression analysis [50]. They help to guide the analysis of
data by a human, to inform about which steps are likely to
work next, and to allow direct execution. In contrast to our
approach they do not offer support for a systematic
exploration of the design space of possible processes
(beyond the hand-coded strategies) nor for their relative
rankings. One notable exception is the TESS system [51].
TESS is similar to our IDAs in that it allows the user to
explore the search space of regression approaches using a
heuristically guided search procedure. However, it pre-
defines the set of approaches (specified using a tree
structure), rather than using on an ontology-based planner.

St. Amant and Cohen [4] study intelligent, computer-
based support for open-ended, statistical/exploratory data
analysis. While focusing on somewhat different application
areas, both their approach and ours employ mixed-initiative
planning, where an Al-planner proposes different courses
of action. The two approaches differ in how the human and
the machine share control of the process. Statistical expert
systems focus on step-by-step guidance, where the user can
evaluate each step and get advice on what to do next. Our
approach, on the other hand, presents the user with all
possible plans and forecasts of their (relative) performance,
allowing the user to choose one (or more) of the plans, run
it, and then rerun the system based on insights gained. This
latter approach is better suited in a domain (like knowledge
discovery) where algorithms may run for extended periods
of time. It may be worthwhile to create a hybrid approach
that combines step-by-step guidance with overall planning
allowing for the support of both types of data analysis.

Implementing Morik’s [24] proposition mentioned briefly
above, the Mining Mart project [19] stores best-practice cases
of preprocessing chains that were developed by experienced
users. The project has developed a data mining workbench,
which allows users to draw on a case base to develop new
data mining processes. Mining Mart is similar to our
approach, in that it provides process-oriented discovery
assistance to users based on an operator metamodel [52] and
a case-base. It differs in that it does not provide users any

planning facility or active support while choosing among the
cases stored in the database. Finally, even though the Mining
Mart metamodel is richer than the one we chose (it describes
not only the operators but also captures metadata about the
data set), it does not seem to take advantage of inheritance
features, which can vastly simplify the implementation and
engineering of an ontology. Our approach is complimentary
to Mining Mart and advantage could be had from combining
the strengths of both approaches.

Kerber et al. [53] document the DM process using active
links to DM processes (that have been visually pro-
grammed) and to the rationale for major design choices.
They collect these descriptions in a repository. This
approach facilitates the reuse of DM processes, resulting
in a knowledge management system for DM processes. It is
complementary to our approach, as it emphasizes the
documentation and retrieval of past knowledge, which
could be integrated well with our notion of active support
as represented by IDAs.

The only work of which we are aware that uses an
explicit ontology within a metalevel machine-learning
system is described by Suyama and Yamaguchi [54]. As
far as we can tell, this system uses the ontology to guide the
composition, by genetic programming, of fine-grained
induction algorithm components.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We have argued for a systematic exploration of the design
space of DM processes, without which users (even experts)
seldom are systematic in their search of the DM-process
space and, therefore, may overlook important, useful
DM processes. Our IDA does not mimic the behavior of
experts, who often use heuristics to preprune the hypoth-
esis space to a “consideration set.” Prepruning often leads
experts to overlook excellent solutions, which lie outside of
their consideration set [6].

For emphasis, we have discussed novice users and
expert users. However, this is not a true dichotomy—there
is a spectrum of expertise along which users reside. For the
most novice, any help with DM process planning will be
helpful. For the most expert, an IDA could be useful for
double-checking, and for automating previously manual
tasks, as well as for suggesting additional processes. For
others along the expertise spectrum, IDAs will have both
types of benefits. Furthermore, even among experts,
different users have different expertise: a data miner trained
in the statistics community and a data miner from the
machine-learning community can be experts and novices
with respect to different methods. An IDA may help to
educate any user. For example, when the system produces a
highly ranked plan that a user had not considered
previously, the user can examine the ontology, and become
educated on some new aspect of the DM process.

A unique benefit of an explicit ontology is the synergy it
can provide between teams of users. If users contribute to
the ontology, other users instantly receive the benefit of
their contributions. Thus, an IDA may exhibit what
economists call network externalities or network effects: the
value to each user increases as the “network” grows. An
IDA becomes more valuable to each user as the number of
contributing users grows. All users get the benefit of each
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contributor’s work automatically. No single member must
be expert in all data mining technology.

Consider the following example of network effects in
action. Jill is a member of a large team of data miners, with
several on-going projects. While reading the statistics
literature she discovers a technique called dual scaling [55],
a preprocessing operator that transforms categorical data
into (scaled) numeric data, in a manner particularly useful
for classification. Jill codes up a new preprocessor (call it
DS) and uses it in her work. Such discoveries normally are
isolated; they do not benefit a team’s other projects.
However, consider what happens if Jill simply adds DS
into the IDA. When another team member, Jack, uses the
system, DM-process plans may be generated that use DS
(when appropriate). In some cases, these plans will be
highly ranked (when DS is likely to do a good job satisfying
Jack’s criteria). In such cases, Jack could experiment with
DS immediately, or could read about it (using the
documentation Jill added), or could follow pointers to the
literature, or could call Jill directly and talk to her about it.
Thereby, the tool brings to bear shared knowledge in the
context of a particular need.

While we have provided no true experimental support
for this assertion (adding the target-marketing template did
greatly improved the performance of IDEA for the
KDDCUP-1998 problem), empirical studies of the social
aspects of knowledge sharing provide support for analo-
gous claims in different application domains. Pentland [56],
for example, shows how workers in a software hotline use a
shared database as a central knowledge-sharing tool to
become more effective as a team. Ackerman and Mandel
[57] show how a knowledge-sharing tool helps astrophysi-
cists learn from each other how to perform specific data
analysis tasks.

We are not suggesting automating the DM process
totally. In contrast, intricate user interaction is critical to
successful discovery. We have shown that it is possible to
provide automated, knowledge-based assistance for certain
aspects of DM process design. We only have covered a few
aspects so far, and for the most part only in the prototypical
linear process. For example, our current prototype does not
produce cyclic processes and our code generator does not
yet produce code for more-complicated components, such
as iterative feature selection [58] (e.g., around a subprocess),
wrappers for parameter tweaking [41], progressive sam-
pling [14], or the combination of the results of multiple
plans using procedures such as Bayesian model averaging
[59]. As new components are added, the space of
DM processes will grow, and more knowledge or interac-
tion may need to be brought to bear than is evident in the
demonstrations we have provided here. On the other hand,
this difficulty faces human data miners as well as IDAs, and
the result seems to be that, even expert humans end up
using only a small set of tools: those with which they are
familiar. Even a moderately effective IDA would expand
this set.

Our experiments with rankings serve to demonstrate
that valid processes can be ranked effectively. As stated
above, we have not yet studied the production of rankings
in depth. Our IDA ranks the enumerations by character-
istics such as speed, accuracy, and model comprehensi-
bility. Some of those desiderata, such as speed and

accuracy, have clear objective measures. Others are highly
subjective. A statistician, for example, might rate a logistic
regression equation as being very comprehensible, whereas
a manager might not. A decision tree, on the other hand,
might have the opposite result. Such preferences could be
entered directly into a user-specific ontology, or could be
discovered by the IDA using relevance feedback.

The related work on ranking induction algorithms
should be very helpful for designing IDAs, but also
provides important caveats. For example, our use of the
Spearman rank-correlation coefficient in effect weights
equally all positions in a ranking. However, for our
purposes, the processes near the top of the ranking
probably would be the critical ones (especially given a
large number of generated process plans). Soares et al. [43]
introduce a weighted modification to Spearman’s coeffi-
cient, that takes into account position in the ranking. This
same group of researchers also points out other challenges
in comparing rankings, stemming from the fact that the
“ideal” ranking typically is based only on estimates of the
true error rates [42], [43].

Ranking DM processes using autoexperimentation raises
the concern of multiple comparisons problems. Once the
ontology is large, process-level overfitting may become an
issue. This is a fundamental problem of manual or
automatic search for good data mining processes, but is
exacerbated by autoexperimentation.

We only have considered here parts of the process that
are relatively well understood. Preprocessing existing
variables, induction algorithms, and postprocessing learned
models have received considerable attention in the litera-
ture. Other parts of the process are not as well understood
or documented. For example, although feature construction
has received research attention for years, our understanding
of when and how to use it effectively pales in comparison
with our understanding of these other parts of the process.
Consider the KDDCUP 1998 problem we presented above.
We side-stepped the issue of feature construction, which
(we assume) was crucial to success in the competition. Does
enough knowledge exist to provide an IDA with an
ontology that will be effective to assist a user with feature
construction? To our knowledge, this has yet to be shown
convincingly. However, if generally effective methods or
problem-specific heuristics exist, an IDA should be able to
incorporate them. Additionally, our current prototype does
not rely on detailed metadata (beyond attribute type). IDAs
ought to use detailed metadata to restrict search as well as
to inform the ranking, for example, by extending the
findings of the Statlog and METAL projects to
DM processes. We also have assumed that the user will
perform the selection of the discovery task(s) to perform. A
separate task is intelligent assistance for the selection of
discovery tasks. This typically is ignored in discussions of
the knowledge discovery process, but was addressed in
early knowledge discovery work by Lenat [60] and recently
by Livingston et al. [61].

Finally, although studies such as this are necessary for
the development of useful IDAs, we also need well-
designed (and executed) user studies to assess whether
IDAs actually are effective in helping real data miners. Such
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studies could also provide indications of which features of
IDAs are most effective in supporting the knowledge
discovery process and, therefore, provide guidance for
further improvements of IDAs.

8 CONCLUSION

Both novices and specialists need assistance in navigating
the space of possible DM processes. We presented an
ontology-based IDA, arguing that it can generate valid,
nontrivial, and sometimes surprisingly interesting
DM-process instances. Further, we have given empirical
evidence that it is possible for IDAs to rank process
instances effectively by speed and by accuracy, and have
argued that they could rank by model comprehensibility,
albeit subjectively. Finally, we have argued that IDAs can be
particularly useful as a knowledge-sharing environment for
teams of data miners, creating network effects wherein the
tool becomes increasingly valuable as it gets more and more
contributing users.

The knowledge discovery process has been a key concept
in the field of KDD for more than a decade, but very little
research addresses it explicitly. After having undertaken
this work, we understand better why. Treating the DM
process requires a tremendous breadth of knowledge of
research and practical technique. Even most researchers
know only a fraction of what is necessary to do a
comprehensive job of building an ontology (and, we
certainly have mistreated certain topics, although we have
been careful). In retrospect, we believe even more strongly
that in order for research on the knowledge discovery
process to advance, systems like IDAs are essential—they
document and automate parts of the process that are better
understood, in order for research to concentrate on the large
areas that are not well understood.
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