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Abstract. Condensation phenomenon is often observed in social networks such as Twit-
ter where one “superstar” vertex gains a positive fraction of the edges, while the remaining
empirical degree distribution still exhibits a power law tail. We formulate a mathemat-
ically tractable model for this phenomenon that provides a better fit to empirical data
than the standard preferential attachment model across an array of networks observed in
Twitter. Using embeddings in an equivalent continuous time version of the process, and
adapting techniques from the stable age-distribution theory of branching processes, we
prove limit results for the proportion of edges that condense around the superstar, the
degree distribution of the remaining vertices, maximal non-superstar degree asymptotics,
and height of these random trees in the large network limit.

1. Retweet Graphs and a mathematically tractable Model

Our goal here is to provide a simple model that captures the most salient features of
a natural graph that is determined by the Twitter traffic generated by public events. In
the Twitter world (or Twitterverse), each user has a set of followers; these are people who
have signed-up to receive the tweets of the user. Here our focus is on retweets; these are
tweets by a user who forwards a tweet that was received from another user. A retweet is
sometimes accompanied with comments by the retweeter.

Let us first start with an empirical example that contains all the characteristics observed
in a wide array of such retweet networks. Data was collected during the Black Entertain-
ment Television (BET) Awards of 2010. We first considered all tweets in the Twitterverse
that were posted between 10 AM and 4 PM (GMT) on the day of the ceremony, and
we then restricted attention to all the tweets in the Twitterverse that contained the term
“BET Awards”. We view the posters of these tweets as the vertices of an undirected simple
graph where there is an edge between vertices v and w if w retweets a tweet received from
v, or vice-versa. We call this graph the retweet graph.

In the retweet graph for the 2010 BET Awards one finds a single giant component (see
Figure 1.1). There are also many small components (with five or fewer vertices) and a
large number of isolated vertices. The giant component is also approximately a tree in
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Figure 1.1. Giant component of the 2010 BET Awards retweet graph.

the sense that if we remove 91 edges from the graph of 1724 vertices and 1814 edges we
obtain an honest tree. Finally, the most compelling feature of this empirical tree is that
it has one vertex of exceptionally large degree. This “superstar” vertex has degree 992, so
it is connected to more than 57% of the vertices. As it happens, this “superstar” vertex
corresponds to the pop-celebrity Lady Gaga who received an award at the ceremony.

1.1. Superstar Model for the giant component. Our main observation is that the
qualitative and quantitative features of the giant component in a wide array of retweet
graphs may be captured rather well by a simple one-parameter model. The construction of
the model only makes an obvious modification of the now classic preferential attachment
model, but this modification turns out to have richer consequences than its simplicity
would suggest. Naturally, the model has the “superstar” property baked into the cake,
but a surprising consequence is that the distribution of the degrees of the non-superstar
vertices is quite different from what one finds in the preferential attachment model.
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Our model is a graph evolution process that we denote by {Gn, n = 1, 2, . . .}. The
graph G1 consists of the single vertex v0, that we call the superstar. The graph G2 then
consists of the superstar v0 , a non-superstar v1, and an edge between the two vertices.
For n ≥ 2, we construct Gn+1 from Gn by attaching the vertex vn to the superstar v0 with
probability 0 < p < 1 while with probability q = 1 − p we attach vn to a non-superstar
according to the classical preferential attachment rule. That is, with probability q the non-
superstar vn is attached to one of the non-superstars {v1, v2, . . . , vn−1} with probability
that is proportional to the degree of vi in Gn.

1.2. Organization of the paper. In the next section, we state the main results for the
Superstar Model. In Section 3, we consider previous work on Twitter networks and explore
the connection between our model and existing models. In this Section we also describe
two variants of the basic superstar model (linear attachment and uniform attachment)
that can be rigorously analyzed using the same mathematical methodology developed in
this paper. In Section 4 we study the performance of this model on various real networks
constructed from the Twitterverse and we compare our model to the standard preferential
attachment model. Section 5 is the heart of the paper. Here we construct a special two-
type continuous time branching process that turns out to be equivalent to the Superstar
Model and analyze various structural properties of this continuous time model. In Section
5.2 we prove the equivalence between the continuous time model and the Superstar Model
through a surgery operation. In Section 6 we complete the proofs of all the main results.

2. Mathematical Results for the Superstar Model

Let {Gn, n = 1, 2, . . .} denote the graph process that evolves according to the Superstar
Model with parameter 0 < p < 1. We shall think about all the processes constructed on
a single probability space through the obvious sequential growth mechanism so that one
can make almost sure statements. The degree of the vertex v in the graph G is denoted by
deg(v,G). The first result describes asymptotics of the condensation phenomenon around
the superstar. The result is an immediate consequence of the definition of the model and
the strong law of large numbers. Since it is a defining element of our model, we set the
result out as a theorem.

Theorem 2.1 (Superstar Strong Law). With probability one, we have

lim
n→∞

1

n
deg(v0, Gn) = p. (2.1)

The next result describes the asymptotic degree distribution.

Theorem 2.2 (Degree Distribution Strong Law). With probability one we have

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} = νSM (k, p) ,

where νSM (·, p) is the probability mass function defined on {1, 2, . . .} by

νSM (k, p) =
2− p
1− p

(k − 1)!
k∏
i=1

(
i+

2− p
1− p

)−1

.
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Remark 2.3. One should note that the above theorem implies that the degree distribution
of the non-superstar vertices has a power law tail. Specifically,

2− p
1− p

(k − 1)!
k∏
i=1

(
i+

2− p
1− p

)−1

∼ Cpk−β as k →∞,

for the constants

β = 3 + p/(1− p), Cp =

(
2− p
1− p

)2

Γ

(
2− p
1− p

)
,

where Γ(x) is the gamma function. This should be contrasted with the standard preferential
attachment model (with no superstar attachment) whose degree distribution scales like k−3

as k →∞. Thus, although one might expect that this variation in the attachment scheme
implies that a fraction 1−p of the vertices still continue to perform preferential attachment
and thus the degree distribution should still have a power law exponent of 3, in reality this
attachment scheme has a major effect on the degree distribution. One requires a careful
analysis of the different time-scales of the associated continuous time branching process to
tease out asymptotic properties of the model.

The next theorem concerns the largest degree amongst all the non-superstar vertices
{vi : 1 ≤ i ≤ n}. Let

Υn := max
1≤i≤n

deg(vi, Gn).

Theorem 2.4 (Maximal non-superstar degree). Let γ = (1−p)/(2−p). There exists
a random variable ∆∗ with P(0 < ∆∗ <∞) = 1 such that

lim
n→∞

1

nγ
Υn

P−→ ∆∗.

The almost sure linear growth of the degree of the superstar (Theorem 2.1) is endemic
to our construction. For standard preferential attachment (with no superstar attachment

mechanism), the maximal degree grows like ΘP (n1/2) (cf [20]). Thus the superstar attach-
ment affects the scaling of the maximal degree as well.

Recall that Gn is a tree. View this tree as rooted at the superstar vertex v0. Write
H(Gn) for the graph distance of the vertex furthest from the root. Thus H(Gn) is the
height of the random tree Gn. Theorem 2.1 implies that a fraction p of the vertices in the
network are directly connected to the superstar. One might wonder if this reflects a general
property of the network, namely does H(Gn) = Op(1) as n→∞? The next theorem shows
that in fact the height of the tree increases logarithmically in the size of the network. Let
Lam(·) be the Lambert special function (cf [11]) and recall that Lam(1/e) ≈ 0.2784.

Theorem 2.5 (Logarithmic height scaling). With probability one we have

lim
n→∞

1

log n
H(Gn) =

1− p
Lam(1/e)(2− p)

.

3. Related results and questions

In this Section we briefly discuss the connections between this model and some of the
more standard models in the literature as well as extensions of the results in the paper.
We also discuss previous empirical research done on the structure of Twitter networks.
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3.1. Preferential attachment: This has become one of the standard workhorses in the
complex networks community. It is well nigh impossible to compile even a representative
list of references; see [28] where it was introduced in the combinatorics community, [6] for
bringing this model to the attention of the networks community, [22],[13] for survey level
treatments of a wide array of models, [8] for the first rigorous results on the asymptotic
degree distribution, and [10], [7], [26], and [14] and the references therein for more general
models and results. Let us briefly describe the simplest model in this class of models.
One starts with two vertices connected by a single edge as in the Superstar Model. Then
each new vertex joins the system by connecting to a single vertex in the current tree by
choosing this extant vertex with probability proportional to its current degree. In this
case, one can show ([8]) that there exists a limiting asymptotic degree distribution, namely
with probability one

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} =

4

k(k + 1)(k + 2)
.

Thus the asymptotic degree distribution exhibits a degree exponent of three. The Superstar
Model changes the degree exponent of the non-superstar vertices from three to (3−2p)/(1−
p) (see Theorem 2.4). Further, for the preferential attachment model, the maximal degree

scales like n1/2 ([20]), while for the Superstar Model, the maximal non-superstar degree
scales like nγ with γ = (1− p)/(2− p).

3.2. Statistical estimation: We use real data on various Twitter streams to analyze the
empirical performance of the Superstar Model and compare this with typical preferential
attachment models in Section 4. Estimating the parameters from the data raises a host
of new interesting statistical questions. See [29] where such questions were first raised and
likelihood based schemes were proposed in the context of usual preferential attachment
models. Considering how often such models are used to draw quantitative conclusions
about real networks, proving consistency of such procedures as well as developing method-
ology to compare different estimators in the context of models of evolving networks would
be of great interest to a number of different fields.

3.3. Stable age distribution: The proofs for the degree distribution build heavily on the
analysis of the stable age distribution for a single type continuous time branching process
in [21]. We extend this analysis to the context of a two-type variant whose evolution
mirrors the discrete type model. Using Perron-Frobenius theory a wide array of structural
properties are known about such models (see [17]). The models used in our proof technique
are relatively simpler and we can give complete proofs using special properties of the
continuous time embeddings, including special martingales that play an integral role in
the treatment (see e.g. Proposition 5.4). There have been a number of recent studies on
various preferential attachment models using continuous time branching processes, see e.g.
[25, 4, 12]. For the usual preferential attachment model (p = 0), [24] uses embeddings in
continuous time and results on the first birth time in such branching processes (see [18])
to show that the height satisfies

H(Gn)

log n

a.s.−→ 1

2 Lam(1/e)

Here we use a similar technique, but we first need to extend [18] to the setting of multi-type
branching processes.
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3.4. Previous analysis of Twitter networks: The majority of work analyzing Twitter
networks has been empirical in nature. In one of the earliest studies of Twitter networks [19]
the authors looked at the degree distribution of the different networks in Twitter, including
retweet networks associated with individual topics. Power-laws were observed, but no
model was proposed to describe the network evolution. In [3] the link between maximum
degree and the range of time for which a topic was popular or “trending” was investigated.
Correlations between the degree in retweet graphs and the Twitter follower graph for
different users was studied in [9]. These empirical analyses provided many important
insights into the structure of networks in Twitter. However, the lack of a model to describe
the evolution of these networks is one of the important unanswered questions in this field,
and the rigorous analysis of such a model has not yet been considered. Our work here
presents one of the first such models that produces predictions that match Twitter data
and also provides a rigorous theoretical analysis of the proposed model.

3.5. Related models: One of the main aims of this work is to develop mathematical
techniques that extend in a straightforward fashion to variants of the superstar model.
We state results for two such models in this Section. We will describe how to extend the
proofs for the superstar model to these variants in Section 6.4. We first start with the
Superstar linear preferential attachment. Fix a parameter a > −1. The linear preferential
attachment model is described as follows: As before new vertices attach to vertex v0 with
probability p. With probability q := 1 − p the new vertex attaches to one of the extant
vertices v, with probability proportional to the d(v) + a where d(v) is the present degree
of the vertex. As before, by construction the degree of the superstar v0 scales like ∼ pn
as n → ∞. The techniques in the paper extend with simple modifications to prove the
following.

Theorem 3.1 (Linear superstar preferential attachment). Fix a > −1 and p ∈
(0, 1). In the linear superstar model one has for all k ≥ 1, with probability one

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} =

2− p+ a

1− p

∏k−1
j=1(j + a)∏k

i=1

(
i+ 2−p

1−p(1 + a)
) .

Further for γ(a) = (1− p)/(2− p+ a), there exists a random variable 0 < ∆∗(a) <∞ a.s.
such that the largest degree other than the superstar satisfies

n−γ(a) max
{1≤i≤n}

deg(vi)
P−→∆∗(a) as n→∞.

Similarly one can show that the height of the linear superstar model scales like κ(a) log n
for a limit constant 0 < κ(a) <∞.

We next consider the case of the less realistic superstar model with uniform attachment.
Here each new vertex attaches to the superstar v0 with probability p or to one of the
remaining vertices uniformly at random (irrespective of the degree). Although less realistic
in the context of social networks, this is the superstar variant of the random recursive tree
a model of a growing tree where each new vertex attaches to a uniformly chosen extant
vertex. The random recursive tree has been a model of great interest in the combinatorics
and computer science community (see the survey [27]). This model differs from the previous
models with the limiting degree distribution possessing exponential tails while the maximal
degree only growing logarithmically in the size of the network.
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Theorem 3.2 (Superstar uniform attachment). Let q := 1 − p. For the uniform
attachment model one has for all k ≥ 1 that with probability one

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} =

1

1 + q

(
q

1 + q

)k−1

,

and the maximal non-superstar degree satisfies

lim
n→∞

max1≤i≤n deg(vi)

log n

P−→ 1

log 1+q
q

.

4. Retweet Graphs for Different Public Events

We collected tweets from the Twitter firehose for thirteen different public events, such
as sports matches and musical performances [1]. The Twitter firehose is the full feed
of all public tweets that is accessed via Twitter’s Streaming Application Programming
Interface [2]. By using the Twitter firehose, we were able to access all public tweets in the
Twitterverse.

For each public event E ∈ {1, 2, ..., 13}, we kept only tweets that have an event specific
term and used those tweets to construct the corresponding retweet graph, denoted by
GE . Our analysis focuses on the giant component of the retweet graph, denoted by G0

E .
In Table 4.1 we present important properties of each retweet graph’s giant component
including the number of vertices, number of edges, maximal degree, and the Twitter name
of the superstar corresponding to the maximal degree. A more detailed description of each
event, including the event specific term, can be found in the Appendix.

The sizes of the giant components range from 239 to 7365 vertices. The giant components
of the retweet graphs corresponding to these events are not trees, but they are very tree-
like in that they have only a few small cycles. In Table 4.1 one sees that for each giant
component, the deletion of a small number of edges will result in an honest tree.

4.1. Maximal degree. The maximal degree in the retweet graphs is larger than would
be expected under preferential attachment. Write n = |V (G0

E)| for the number of vertices
in the giant component. For a preferential attachment graph with n vertices it is known
that the maximal degree scales as n1/2. Figure 4.1 shows a plot of the maximal degree
in the giant component dmax(G0

E) and a plot of n1/2 versus n for the retweet graphs. It
can be seen from the figure that the sublinear growth predicted by preferential attachment
does not capture the superstar effect in these retweet graphs.

4.2. Estimating p and the degree distribution. The asymptotic degree distribution
of the Superstar Model is known (via Theorem 2.2) once the superstar parameter p is
specified. We were interested in seeing, for each event E, how well this model predicted
the observed degree distribution in G0

E . For an event E and degree k ∈ {1, 2, ...} we define
the empirical degree distribution of the giant component as

ν̂E(k) =
1

|V (G0
E)|

card
{
vj ∈ V (G0

E) : deg(vj , G
0
E) = k

}
To predict the degree distribution using the Superstar Model, we need a value for p. We
estimate p for each event E as p̂(E) = dmax(G0

E)/|V (G0
E)|. Using p = p̂(E) we obtain the

Superstar Model degree distribution prediction for each event E and degree k, νSM (k, p̂)
from Theorem 2.2. For comparison, we also compare ν̂E(k) to the preferential attachment
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E |V (G0
E)| |E(G0

E)| dmax(G0
E) Superstar

1 7365 7620 512 warrenellis
2 3995 4176 362 anison
3 2847 2918 566 FIFAWorldCupTM
4 2354 2414 657 taytorswift13
5 1897 1929 256 FIFAcom
6 1724 1814 992 ladygaga
7 1659 2059 56 MMFlint
8 1408 1459 269 FIFAWorldCupTM
9 1025 1045 247 FIFAWorldCupTM
10 1024 1050 229 SkyNewsBreak
11 705 710 113 realmadrid
12 505 521 186 Wimbledon
13 239 247 38 cnnbrk

Table 4.1. For each event E, we list the number of vertices ( |V (G0
E)|),

number of edges (|E(G0
E)|) , and maximal degree (dmax(G0

E)) in the giant
component G0

E , along with the Twitter name of the superstar corresponding
to the maximal degree.
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Figure 4.1. Plot of dmax(G0
E) versus n = |V (G0

E)| for the retweet graphs
of each event. The events are labeled with the same numbers as in Table
4.1. Also shown is a plot of n1/2.

degree distribution νPA(k) = 4 (k(k + 1)(k + 2))−1 [8]. Figure 4.2 shows the empirical
degree distribution for the retweet graphs of four of the events, along with the predictions
for the two models. As can be seen, the Superstar Model predictions seem to qualitatively
match the empirical degree distribution better than preferential attachment. To obtain a
more quantitative comparison of the degree distribution we calculate the relative error of
these models for each value of degree k. The relative error for event E and degree k is
defined as relerrorSM (k,E) = |νSM (k, p̂)− ν̂E(k)| (νSM (k, p̂))−1 for the Superstar Model
and relerrorPA(k,E) = |νPA(k)− ν̂E(k)| (νPA(k))−1 for preferential attachment. In Figure
4.3 we show the relative errors for different values of k. As can be seen, the relative error
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Figure 4.2. Plots of the empirical degree distribution for the giant com-
ponent of the retweet graphs (νE(k)), and the estimates of the Superstar
Model (νSM (k, p̂(E))) and preferential attachment (νPA(k)) for four differ-
ent events. Each plot is labeled with the event specific term and p̂(E).

of the Superstar Model is lower than preferential attachment for degrees k = 1, 2, 3, 4 and
for all of the events with the exception of k = 4 and E = 7. There is a clear connection
between the superstar degree and the degree distribution in the giant component of these
retweet graphs that is captured well by the Superstar Model.

5. Analysis of a special two-type branching process

Let us now start the proofs of the main theorems of Section 2. The core of the proof is
a special two-type continuous time branching processes together with a surgery operation
that establishes the equivalence between this continuous time construction and the original
superstar model. We start by describing this construction and then prove the equivalence
between the two models.

5.1. A two-type continuous branching process. We now consider a two-type con-
tinuous time branching process BP(t) whose types we call red and blue. For each fixed
t ≥ 0, we shall view BP(t) as a random tree representing the genealogical structure of the
population till time t. This includes parent child relationships of vertices as well as the
color of each vertex. We use |BP(t)| for the total number of individuals in the population
by time t. Every individual survives forever. We shall also let {BP(t)}t≥0 be the associated
filtration of the process. Let us now describe the construction. At time t = 0 we begin
with a single red vertex that we call v1. For any fixed time 0 < t < ∞, let Vt denote the
vertex set of BP(t). Each vertex v ∈ Vt in the branching process gives birth according to



10

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

E

k = 1

 

 

relerror
SM

(1,E)

relerror
PA

(1,E)

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

E

k = 2

 

 

relerror
SM

(2,E)

relerror
PA

(2,E)

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

E

k = 3

 

 

relerror
SM

(3,E)

relerror
PA

(3,E)

1 3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

E

k = 4

 

 

relerror
SM

(4,E)

relerror
PA

(4,E)

Figure 4.3. Plots of the relative errors of the degree distribution predic-
tions of preferential attachment and the Superstar Model for 13 retweet
graphs. The errors are plotted for degree k = 1, 2, 3, 4.

a Poisson process with rate

λ(v, t) = cB(v, t) + 1

where cB(v, t) is equal to the number of blue children of vertex v at time t. Also let cR(v, t)
denote the number of red children of vertex v by time t. At the moment of a new birth, this
new vertex is colored red with probability p and colored blue with probability q = 1 − p.
Finally for n ≥ 1, define the stopping times

τn = inf {t : |BP(t)| = n} . (5.1)

Since the counting process |BP(t)| is a non-homogenous Poisson process with a rate that
is always greater than or equal to one, the stopping times τn are almost surely finite. This
completes the construction of the branching process.

5.2. Equivalence between the branching process and the superstar model. Before
diving into properties of our two-type branching process constructed as above, let us show
how the superstar model can be obtained from the above branching process via a surgery
operation. We start with an informal description of the connection between the Superstar
Model and the branching process BP(·). To describe this connection, we introduce a new
vertex v0 namely the superstar vertex to the system. Recall that v1 was the root (the initial
progenitor) of the branching process BP(·). We connect vertex v1, to the superstar v0 (v0

played no role in the evolution of BP(·)). This forms the superstar model G2 on 2 vertices.
All the red vertices in the process BP(·) correspond to the neighbors of the superstar v0.
The true degree of a (non-superstar) vertex in Gn+1 is one plus the number of its blue
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Figure 5.1. The surgery passing from BP(τn) to Sn+1 and Gn+1 for n = 6.

children in BP(τn), where the additional factor of one comes from the edge connecting
this vertex to it’s parent. By elementary properties of the exponential distribution, the
dynamics of BP(·) imply that each new vertex that is born is red (connected to the superstar
v0) with probability p, else with probability q = 1− p is blue and connected to one of the
remaining extant (non superstar) vertices with probability proportional to the current
degree of that vertex, thus increasing the degree of this chosen vertex by one. These
dynamics are the same as the Superstar Model.

Formally our surgery will take the tree BP(τn) and modify it to get an n+ 1-vertex tree
Sn that has the same distribution as the superstar model Gn+1. From this we will be able
to read off the probabilistic properties of the Superstar tree Gn+1.

We label the vertices of BP(τn) as {v1, v2, . . . , vn} in order of their birth. Now add a
new vertex v0 to this set to give us the vertex set of the tree Sn. One can anticipate that
v0 will be our superstar. Next, we define the edge set for Sn. To do this, we take each red
vertex v in BP(τn), remove the edge connecting v to its parent (if it has one), and then we
create a new edge between v and v0. To complete the construction of Sn it only remains to
ignore the color of the vertices. An illustration of this surgery for n = 6 is given in Figure
5.1.

Proposition 5.1 (Equivalence from surgery operation). The sequence of trees {Sn : n ≥ 1}
has the same distribution as the Superstar Model {Gn+1 : n ≥ 1}.

Proof: Think of Sn as being rooted at v0 so that every vertex except v0 in Sn has a
unique parent. The parent of all the red individuals is the superstar v0 while the parents
of all of the other blue individuals are unchanged from BP(τn).

The induction hypothesis will be that Sn has the same distribution as Gn+1 and the
degree of each non-superstar vertex in Sn is the number of blue children it possesses plus
one for the edge connecting the vertex to it’s parent in Sn. Condition on BP(τn) and fix
v ∈ BP(τn). By the property of the exponential distribution, the probability that the next
vertex born into the system is born to vertex v is given

λ(v, τn)∑
u∈BP(τn) λ(u, τn)

=
cB(v, τn) + 1∑

u∈BP(τn) cB(u, τn) + 1
.
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Thus a new vertex vn+1 attaches to vertex v with probability proportional to the present
degree of v in Sn. Further, with probability p, this vertex is colored red, whence by the
surgery operation, the edge to vn+1 is deleted and this new vertex is connected to the
superstar v0. In this case the degree of v in Sn is unchanged. With probability 1− p this
new vertex is colored blue, whence the surgery operation does not disturb this vertex so
that the degree of vertex v is increased by one. These are exactly the dynamics of Gn+2

conditional on Gn+1. By induction the result follows. �
For the rest of the paper we shall assume Gn+1 is constructed through this surgery

process from BP(τn) and suppress Sn.

5.3. Elementary properties of the branching process. The previous section set up
an equivalence between the superstar model and the two type continuous time branching
process. The aim of this Section is to prove properties of this two type branching process.
Section 6 uses these results to complete the proof of the main results for the superstar
model.

For t ≥ 0, write R(t) and B(t) for the total number of red and blue vertices respectively
in BP(t). By construction of the process {BP(t) : t ≥ 0}, every new vertex is independently
colored red with probability p and blue with probability 1−p. In particular the number of
blue vertices B(t) is just a time change of a random walk with Bernoulli(1−p) increments.
Thus by the strong law of large numbers

B(t)

|BP(t)|
a.s.−→ 1− p, as t→∞. (5.2)

Before moving onto an analysis of the branching process, we introduce the Yule process.

Definition 5.2 (Rate a Yule process). Fix a > 0. A rate a Yule process is defined as
a pure birth process Yua(·) that starts with a single individual Yua(0) = 1 and with the
rate of creating new individuals proportional to the number of present individuals in the
population namely,

P(Yua(t+ dt)− Yua(t) = 1 | {Yua(s) : 0 ≤ s ≤ t}) = aYua(t)dt.

The Yule process is well studied probabilistic object. The next Lemma collects some
of its standard properties. In particular, Part (a) follows from [23, Section 2.5] while (b)
follows from [5, Theorem 1, III.7].

Lemma 5.3 (Yule process).

(a) For each t > 0 the random variable Yua(t) has a geometric distribution with parameter
e−at, that is

P(Yua(t) = k) = e−at(1− e−at)k−1, k ≥ 1.

(b) The process
(
e−atYua(t) : 0 ≤ t <∞

)
is an L2 bounded martingale with respect to the

natural filtration and e−atYua(t)
a.s.−→ W ′, where W ′ has an exponential distribution with

mean one.

Now define the process

M(t) = e−(2−p)t (|BP(t)|+B(t)) t ≥ 0.

Note that M(0) = 1.
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Proposition 5.4 (Asymptotics for BP(t)). The process (M(t) : t ≥ 0) is a positive L2

bounded martingale with respect to the natural filtration {BP(t) : t ≥ 0} and thus converges
almost surely and in L2 to a random variable W ∗ with E(W ∗) = 1. The random variable
W ∗ is positive with probability one. Further one has

lim
t→∞

e−(2−p)t|BP(t)| = W ∗

2− p
with probability one. (5.3)

Proof We write Z(t) = |BP(t)| and Y (t) = Z(t) + B(t) so that M(t) = e−(2−p)tY (t)
and we let dM(t) = M(t+ dt)−M(t). We then have

dM(t) = e−(2−p)tdY (t)− (2− p)e−(2−p)tY (t)dt. (5.4)

The processes Z(t), B(t) are all counting processes. For such processes, we shall use the

infinitesimal shorthand E(dZ(t)|BP(t)) = a(t)dt to denote the fact that Z(t)−
∫ t

0 a(s)ds is
a local martingale.

Now the counting process Z(t) = |BP(t)| evolves by jumps of size one with

P (dZ(t) = 1|BP(t)) =

 ∑
v∈BP(t)

(cB(v, t) + 1)

 dt, (5.5)

where cB(v, t) always denotes the number of blue children of vertex v at time t. The
number of blue vertices can be written as B(t) =

∑
v∈BP(t) cB(v, t) since every blue vertex

is an offspring of a unique vertex in BP(t). Using (5.5) results in

E(dZ(t)|BP(t)) = (Z(t) +B(t))dt.

Since B(t) ≤ Z(t), we see that the rate of producing new individuals is bounded by 2|BP(t)|.
Thus the process |BP(t)| can be stochastically bounded by a Yule process with a = 2. This
implies by Lemma 5.3 that for all t ≥ 0 we have E(|BP(t)|2) <∞.

Let us now analyze the process B(t). This process increases by one when the new vertex
born into BP(·) is colored blue that happens with probability 1− p. Thus we get

E(dB(t)|BP(t)) = (1− p)(Z(t) +B(t))dt.

Combining the last two equation gives us

E(dY (t)|BP(t)) = (2− p)Y (t)dt.

Using (5.4) now gives that E(dM(t)|BP(t)) = 0. This completes the proof that M(·) is a
martingale.

Next we check that M(·) is an L2 bounded martingale. Since Y 2(t+ dt) can take values
(Y (t) + 1)2 or (Y (t) + 2)2 at rate pY (t) and (1− p)Y (t) respectively, we have

E(d(M2(t))|BP(t)) = (4− 3p)e−(2−p)tM(t)dt.

Thus the process U(t) defined by

U(t) = M2(t)− (4− 3p)

∫ t

0
e−(2−p)sM(s)ds,

is a martingale. Taking expectations and noting that since M(·) is a martingale, with
M(0) = 1 thus E(M(s)) = 1 for all s, we get

E(M2(t)) = 1 + (4− 3p)

∫ t

0
e−(2−p)sds ≤ 1 +

4− 3p

2− p
.
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This L2 boundedness implies that there exists a random variable W ∗ such that

e−(2−p)t(|BP(t)|+B(t))
a.s.,L2

−→ W ∗.

Using (5.2) shows that e−(2−p)t|BP(t)| →W ∗/(2− p). To ease notation, write

W :=
W ∗

(2− p)
.

To complete the proof of the Proposition we need to show that W is strictly positive.
First note that by L2 convergence, E(W ∗) = 1. So in particular P(W = 0) = r < 1. Let
ζ1 < ζ2 < · · · be the times of birth of children (blue or red) of the root vertex v1 and write
BPi(·) for the subtree consisting of the ith child and its descendants. Then

e−(2−p)t|BP(t)| =
∞∑
i=1

e−(2−p)ζi
[
e−(2−p)(t−ζi)|BPi(t− ζi)|

]
11 {ζi ≤ t}+ e−(2−p)t.

Thus as t→∞, for any fixed K ≥ 1, we have

W ≥st
K∑
i=1

e−(2−p)ζiWi

where {Wi}i≥1 are independent and identically distributed with the same distribution as

W (independent of {ζi}i≥1) and ≥st denotes stochastic domination. This independence
gives us

P(W = 0) ≤ P(Wi = 0 ∀ 1 ≤ i ≤ K) = rK

Letting K →∞ that P(W = 0) = 0.
�

Before ending this Section, we derive some elementary properties of the offspring of
an individual in BP(·). Let σv be the time of birth of vertex v in BP(·). Recall that
cB(v, σv + s) and cR(v, σv + s) denote the number of blue and red children respectively of
this vertex s units of time after the birth of v. Since the distribution of the point process
representing offspring of each vertex is the same, these random variables have the same
distribution irrespective of the choice of the vertex v. Define the process

M∗(t) := cR(v, σv + t)− p
∫ t

0
(cB(v, σv + s) + 1)ds, t ≥ 0.

Lemma 5.5 (Offspring point process: distributional properties).

(a) Conditional on BP(σv) we have

(cB(v, σv + t) : t ≥ 0)
d
= (Yu1−p(t)− 1 : t ≥ 0) ,

and thus one has

E(cB(v, σv + t)) = e(1−p)t − 1, t ≥ 0.

(b) The process (M∗(t) : t ≥ 0) is a martingale with respect to the filtration {BP(σv + t) : t ≥ 0}
and one has

E(cR(v, σv + t)) =
p

1− p
(e(1−p)t − 1), t ≥ 0.
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Proof: Part(a) is obvious from construction. To prove (b), note that

E(dcR(v, σv + t)|BP(t+ σv)) = p(cB(v, σv + t) + 1)dt,

since vertex v creates a new child at rate cB(v, σv + t) + 1 which is then marked red with
probability p. �

5.4. Convergence for blue children proportions. The equivalence between BP(·) and
the superstar model described in Section 5.2 will imply that the number of vertices with
degree k + 1 in Gn+1 is the same as the number of vertices in BP(τn) with exactly k blue
children. We will need general results on the asymptotics of such counts for the process
BP(t) as t → ∞. Using the equivalence created by the surgery operation, one can then
transfer these results to asymptotics for the degree distribution of the original superstar
model. Now recall the random variable W ∗ obtained as the martingale limit obtained in
Proposition 5.4. Define p≥k(∞) as

p≥k(∞) = k!

k∏
i=1

(
i+

2− p
1− p

)−1

. (5.6)

Theorem 5.6. Fix k ≥ 1 and let Z≥k(t) denote the number of vertices in BP(t) that have
at least k blue children. Then

e−(2−p)tZ≥k(t)
a.s.−→ p≥k(∞)

W ∗

2− p
as t→∞.

Proof: The proof uses a variant of the reproduction martingale technique developed in
[21] and it is framed in two steps:

(a) Proving convergence of expectations of the desired quantities to the expectations of
the asserted limits. This is proved in Section 5.4.1.

(b) Bootstrapping this convergence to almost sure convergence using laws of large numbers.
This is proved in Section 5.4.2.

We start with some notation required to carry out this program. For a vertex v, write

ζv = ((ξvi , Cvi ) : i ≥ 1),

for the point process representing offspring (times of birth and types) of this vertex v.
More precisely here ξvi denotes the time of birth of the i-th offspring of vertex v after the
birth of vertex v into the branching process {BP(t) : t ≥ 0} while Cvi denotes the color of
this child (red or blue). Thus the i-th offspring of vertex v is born into BP at time σv + ξvi .
Write ξv = (ξvi : i ≥ 1) for the process that just keeps track of times of birth of these
offspring for vertex v. Note that the point processes ζv and ξv have the same distribution
across vertices v. We shall use ζ := ζv1 and ξ := ξv1 to denote a generic point process
with the above distributions. We shall view ξ as a counting measure on (R+,B(R+)). For
A ∈ B(R+), write ξ(A) for the number of points in the set A. Define the corresponding
intensity measure µ by

µ(A) := E(ξ(A)) A ∈ B(R+).

We start with a simple lemma that has notable consequences.
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Lemma 5.7 (Renewal measure). For α = 2− p we have∫ ∞
0

e−αtµ(dt) = 1.

The measure defined by setting µα := e−αtµ(dt) is a probability measure and this measure
has expectation

∫∞
0 tµα(dt) = 1.

Proof: As in Lemma 5.5 let cB(v1, t) and cR(v1, t) denote the number of red and blue
children respectively of vertex v1 by time t (note that σv1 = 0 ). Then by definition, the
intensity measure µ satisfies µ([0, t]) = E(cR(v1, t)+cB(v1, t)). Further by Fubini’s theorem∫ ∞

0
e−αtµ(dt) = α

∫ ∞
0

e−αtµ[0, t]dt.

Using the expressions for E(cB(v1, t)) and E(cR(v1, t)) from Lemma 5.5 completes the proof.
The second assertion regarding the expectation follows similarly. �

5.4.1. Convergence of expectations. The first step in the proof of Theorem 5.6 is conver-
gence of expectations. This follows using standard renewal theory. We setup notation
that allows us to use the linearity of expectations to derive a renewal equation. We start
with the definition of a characteristic ([15, 16]) that we use to count the number of
vertices in the branching process with some fixed property. For each vertex v ∈ BP(∞),
let {φv(s) : s ≥ 0} be an independent and identically distributed non-negative stochastic
process, with φv(s) measurable with respect to {(ξvi , Cvi ) : ξvi ≤ s}. Thus the value of the
stochastic process at time s namely φv(s) is determined by the set offspring of vertex v
born before the age s of this vertex v.

The value φv(s) is referred to as the score of vertex v at age s [15, Section 6.9]. We write
φ := φv1 to denote the process corresponding to the root when we would like to refer to a
generic such process. Throughout we shall assume that φ(·) is bounded and non-negative,
namely for some constant C <∞,

φ(s) ≥ 0, φ(s) < C, for all s ≥ 0.

Define

Zφ(t) =
∑

v∈BP(t)

φv(t− σv), t ≥ 0

for the branching process BP(·) counted according to characteristic φ. The main examples
of interest are
(a) Total size: φ(s) = 1 for all s ≥ 0. This results in Zφ(t) = |BP(t)|, the total size of the
branching process by time t.
(b) Degree: φ(s) = 11 {k or more blue children at age s} gives Zφ(t) = Z≥k(t), the num-
ber of vertices in BP(t) with k or more blue children.

Now fix an arbitrary bounded characteristic φ. For fixed time time t > 0, conditioning
on the offspring process ζ := ζv1 of vertex v1, the branching process counted according to
this characteristic satisfies the recursion

Zφ(t) = φv1(t) +
∑
ξ
v1
i ≤t

Z(i)

φ (t− ξv1i ), (5.7)

where Z(i)

φ (·) d
= Zφ(·) and are independent for i ≥ 1 and correspond to the contribution

of the descendants of the i-th child of vertex v1. Taking expectations and defining the
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function mφ(·) by mφ(t) := E(Zφ(t)), this function satisfies the renewal equation

mφ(t) = E(φ(t)) +

∫ t

0
mφ(t− s)µ(ds)

Define

m̃φ(t) := e−αtmφ(t), t ≥ 0.

Lemma 5.7 and standard renewal theory ([15, Theorem 5.2.8]) now imply the next result.

Proposition 5.8. For arbitrary bounded characteristics, writing α = (2− p) we have

lim
t→∞

m̃φ(t) =

∫ ∞
0

e−αsE(φ(s))ds := m̃φ(∞).

Applying this to the two examples which count the size of the branching process and
number of vertices with at least k blue children we get the following result.

Corollary 5.9. Taking the two characteristics of interest one gets for φ(t) = 1

e−αtE(|BP(t)|)→ 1

α
, as t→∞

and for φ(t) = 11 {k or more blue children at time t}

e−αtE(Z≥k(t))→
p≥k(∞)

α
as t→∞.

with p≥k(∞) as in (5.6).

Proof: The first assertion in the corollary is obvious (corresponding to the case φ(·) ≡
1). To prove the second assertion regarding the number of blue vertices, observe that the
limit constant in Proposition 5.8 can be written as

1

α

∫ ∞
0

αe−αsE(11 {root v1 has k or more blue children at age s})ds =
1

α
P(cB(v1, T ) ≥ k)

where T is an exponential random variable with mean α−1 that is independent of the
counting process of the number blue offspring cB(v1, ·). Further by Lemma 5.5 (a),

cB(v1, ·)
d
= Yu1−p(·)− 1,

where Yu1−p(·) is rate 1−p Yule process. The inter-arrival times Xi between blue children
i and i + 1 are independent exponential random variables with mean (1 − p)−1(i + 1)−1,

independent of T . In particular P(cB(v1, T ) ≥ k) = P(T >
∑k−1

j=0 Xj). Conditioning on the

value of
∑k−1

j=0 Xj and using tail probabilities for the exponential distribution shows that

P(T >

k−1∑
j=0

Xj) = E

exp(−α
k−1∑
j=0

Xj)

 =

k−1∏
j=0

E (exp(−αXj)) .

Using the Laplace transform of the exponential distribution, one can check that the last
expression equals p≥k(∞). �
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5.4.2. Almost sure convergence. The aim of this section is to strengthen the convergence of
expectations to almost sure convergence. A key role is played by a reproduction martingale,
a close relative of the martingale used in [21] to analyze single type branching processes
as well as in [18] to analyze times of first birth in generations. Let v1, v2, v3, . . . denote
the vertices of BP(·) listed in the order of their birth times and let σvi denote the time at
which vertex vi is born into the branching process BP(·). Note that σv1 = 0. Recall that
ξvi = (ξvi1 , ξ

vi
2 , . . .) denotes the offspring point process of vi, namely the first offspring of vi

is born at time σvi + ξvi1 , the second offspring of vi is born at time σvi + ξvi2 and so on. To
ease notation we shall write ζ(i) := ζvi and ξ(i) := ξvi . Viewing ξ(i) as a random counting
measure on R+ and writing α = 2− p, we have

ξ(i)α :=
∞∑
j=1

exp(−αξvij ) =

∫ ∞
0

e−αtξ(i)(dt).

For m ≥ 1 let F̃m be the sigma-algebra generated by vertices {v1, . . . , vm} and their
offspring processes namely

F̃m := σ(
{
ζ(i) : 1 ≤ i ≤ m

}
).

For m = 0, let F̃0 be the trivial sigma-field. Now define R̃0 = 1 and for m ≥ 0 define

R̃m+1 := R̃m + e−ασvm+1 (ξ(m+1)
α − 1).

Let Γm be the set of the first m individuals born and all of their offspring. One can check
that

R̃m =
∑
v∈Γm

e−ασv −
m∑
j=1

e−ασvj . (5.8)

Thus R̃m is a weighted sum of children of the first m individuals with weight e−ασx for
vertex x, the individuals v1, v2, . . . , vm being excluded. In particular R̃m > 0 for all m.
The next Lemma shows that the sequence (R̃m : m ≥ 0) is much more.

Proposition 5.10 (Reproduction martingale). The sequence
(
R̃m : m ≥ 0

)
is a non-

negative L2 bounded martingale with respect to the filtration
{
F̃m : m ≥ 0

}
. Thus there

exists a random variable R∞ with E(R∞) = 1 such that R̃m → R∞ almost surely and in
L2.

Proof: By the choice of α = 2 − p in Lemma 5.7 for i ≥ 1 we have E(ξ(i)α ) =∫∞
0 e−αtµ(dt) = 1. Further σvm+1 is F̃m measurable while ξ(m+1)

α is independent of F̃m.
This implies

E(R̃m+1 − R̃m|F̃m) = e−ασvm+1E(ξ(m+1)
α − 1) = 0.

By the orthogonality of the increments of the martingale Rm we see that

E((R̃m − 1)2) ≤ E([ξ(i)α ]2)E

(
m∑
i=1

e−2ασvi

)
.

Thus to check L2 boundedness it is enough to check that the right hand side is bounded.
The following lemma bounds the right hand side of the above equation in two steps and
completes the proof.

Lemma 5.11. (a) Let ξα := ξv1α and assume 0 < p < 1. Then E([ξα]2) <∞.
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(b) For any m, E(
∑m

i=1 e
−2ασvi ) ≤ 1 + α−1

Proof: To prove (a), we observe that ξα =
∫∞

0 αe−αtξ[0, t]dt where ξ is the point process
encoding times of birth of offspring of v1. Thus by Jensen’s inequality with the probability
measure αe−αtdt we have

[ξα]2 ≤
∫ ∞

0
αe−αt[ξ[0, t]]2dt

Let T be an exponential random variable with mean α−1 independent of ξ. Thus it is
enough to show E([ξ[0, T ]]2) < ∞. Note that ξ[0, T ] = cR(v1, T ) + cB(v1, T ), i.e. the
number of red and blue vertices born to v1 by the random time T . Thus it is enough to
show E(c2

R(v1, T )) and E(c2
B(v1, T )) <∞. Conditioning on T = t first note by using Lemma

5.3 that for fixed t, E(c2
B(v1, t)) ≤ Ce2(1−p)t where C < ∞ is a constant independent of

t. Further again using Lemma 5.3, for any fixed t, conditional on cB(v1, t), cR(v1, t) is
stochastically dominated by a Poisson random variable with rate tcB(v1, t). Noting that
α = 2− p, we get

E([ξ[0, T ]]2) ≤ C ′
∫ ∞

0
e−(2−p)t

(
e2(1−p)t + t2e2(1−p)t

)
dt <∞,

for some constant C ′ <∞. This completes the proof of (a).
To prove (b), let S(t) =

∑
v∈BP(t) e

−2ασv . Then
∑m

i=1 e
−2ασvi = S(τm). Further by (5.5)

the rate of creation of new vertices at time t is |BP(t)|+B(t). Thus one has

E(dS(t)|BP(t)) = e−2αt(|BP(t)|+B(t))dt.

Taking expectations and noting that e−αt(|BP(t)|+B(t)) is a martingale gives

E(S(t)) = 1 +

∫ t

0
e−αsds.

This completes the proof of part (b) and thus completes the proof of the Lemma.
�

The next Theorem completes the proof of Theorem 5.6. Before stating the main result
we define some new constructs which will be used in the proof. For a bounded characteristic
φ, recall the limit constant m̃φ(∞) in Proposition 5.8. In the following theorem a key role

will be played by the martingale
(
R̃m : m ≥ 0

)
. Recall that this was a martingale with

respect to the filtration
{
F̃m : m ≥ 0

}
. We shall switch gears and now think about the

process in continuous time. Define I(t) as the set of individuals born after time t whose
parents were born before time t and note that

R̃|BP(t)|=
∑
x∈I(t)

e−ασx (5.9)

To ease notation, set
Rt := R̃|BP(t)|, Ft := F̃|BP(t)|. (5.10)

Theorem 5.12 (Convergence of characteristics). For any bounded characteristic that sat-
isfies the recursive decomposition in (5.7) one has

e−αtZφ(t)
a.s.−→ m̃φ(∞)R∞.

Taking φ = 1 and using Proposition 5.4 implies that R∞ = W ∗, the a.s. limit of the
martingale (e−αt(|BP(t)|+B(t)) : t ≥ 0).



20

Proof: First note that Proposition 5.10 implies that {Rt : t ≥ 0} is an L2 bounded

martingale with respect to the filtration {Ft : t ≥ 0} and thus Rt
a.s.−→ R∞. For a fixed

c > 0, define I(t, c) as the set of vertices born after time (t + c) whose parents are born
before time t and let

Rt,c :=
∑

x∈I(t,c)

e−ασx . (5.11)

Obviously Rt,c ≤ Rt. Intuitively one should expect Rt,c to be small for large c. The next
Lemma makes this intuition precise. Recall the random variable ξα =

∫∞
0 e−αtξ(dt) where

ξ = ξv1 denoted the point process corresponding to births of offspring of vertex v1. For
fixed c ≥ 0, write ξα(c) :=

∫∞
c e−αtξ(dt). Finally define

U := sup
c≥0

ec/2ξα(c), A = E(U), K(c) = Aeα
e−c/2

1−
√
e
. (5.12)

The proof below will show that A < ∞. Also note that K(c) → 0 as c → ∞. Finally
recall from the proof of Proposition 5.4 that we defined limt→∞ exp(−αt)|BP(t)| = W .

Theorem 5.13. For any fixed c > 1 we have

lim sup
t→∞

Rt,c ≤ K(c)W a.s.

where K(c) is as in (5.12).

Proof of Theorem 5.13: The proof uses a variant of the proof used in [21]. Let us
start by showing that E(U) <∞. First note that for any fixed c ≥ 0,

ec/2ξα(c) ≤
∫ ∞
c

et/2e−αtξ(dt) ≤
∫ ∞

0
et/2e−αtξ(dt).

Thus it is enough to show that E(
∫∞

0 et/2e−αtξ(dt)) < ∞. By Fubini and integration by

parts, E(
∫∞

0 et/2e−αtξ(dt)) = (α−1/2)
∫∞

0 et/2e−αtµ[0, t]dt where µ is the intensity measure
of the point process ξ. Using Lemma 5.5 shows that for some constant C <∞ we have∫ ∞

0
et/2e−αtµ[0, t]dt ≤ C

∫ ∞
0

et/2e−αte(1−p)tdt = C

∫ ∞
0

e−t/2dt <∞,

by using α = 2− p. This completes the proof of finiteness.
Now note that by definition for any c > 1

Rt,c =

btc∑
i=1

∑
v:σv∈[i−1,i)
j:ξvj+σv>t+c

exp(−α(ξvj + σv)) +
∑

v:σv∈[btc,t)
j:ξvj+σv>t+c

exp(−α(ξvj + σv))

≤
dte∑
i=1

∑
v:σv∈[i−1,i)
j:ξvj+σv>t+c

exp(−α(ξvj + σv)). (5.13)

Here as usual btc is the largest integer ≤ t and dte is the smallest integer ≥ t. Analogous
to the definition of ξα(·), define for each vertex v, ξvα(·) using the offspring point process
ξv of v namely,

ξvα(t) :=

∫ ∞
t

exp(−αt)ξv(dt) =
∑
j:ξvj≥t

exp(−αξvj ).
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Further analagous to (5.12), for each vertex v define

Uv(t) := et/2ξvα(t), Uv := sup
t≥0

et/2ξvα(t).

Note that

Uv
d
= U, Uv(t) ≤st U, (5.14)

where U is as in (5.12) and ≤st represents stochastic domination. Now for a fixed i ≥ 1
and vertex v with σv ∈ [i− 1, i),∑

j:ξvj>t+c−σv

e−α(ξvj+σv) = e−ασvξvα(t+ c− σv) ≤ e−α(i−1)e−(t+c−i)/2Uv(t+ c− σv).

Using this in (5.13) gives

Rt,c ≤
dte∑
i=1

e−α(i−1)e−(t+c−i)/2
∑

v:σv∈[i−1,i)

Uv(t+ c− σv) (5.15)

To proceed, we will need the following generalization of the strong law. We paraphrase the
following from [21, Proposition 4.1].

Proposition 5.14 (Extension of the strong law). Let {ni : i ≥ 1} be a sequence of integers
and let (Uij : 1 ≤ j ≤ ni) be a collection of independent random variables for each fixed
i ≥ 1. Suppose that there exists a random variable U > 0 with E(U) <∞ such that

|Uij | ≤st U, 1 ≤ j ≤ ni. (5.16)

Further assume

lim inf
i→∞

ni+1

n1 + · · ·+ ni
> 0. (5.17)

Then

Si :=

∑ni
j=1(Uij − E(Uij))

ni

a.s.−→ 0, as i→∞, (5.18)

and in fact for any ε > 0
∞∑
i=1

P(|Si| > ε) <∞. (5.19)

Proceeding with the proof, for any interval I ⊆ R+, write BP(I) for the collection of
vertices born in the interval I so that BP(t) ≡ BP[0, t]. We will use the above propo-
sition with ni = |BP[i − 1, i)| and for each fixed i, the collection of random variables
{Uv(t+ c− σv) : v ∈ BP[i− 1, i)}. This is a little subtle since the above Proposition is
stated for deterministic sequences but this justified exactly as in the proof of [21, Equation
5.29]. First note that Uv(t+ c− σv) ≤st U for each fixed v. Note that by Proposition 5.4,

ni+1

n1 + · · ·+ ni
:=
|BP[i, i+ 1)|

BP[0, i)

a.s.−→ eα − 1 > 0,

as i → ∞, thus (5.17) is satisfied (almost surely). Using Proposition 5.14 in (5.15) (in
particular (5.19)) now shows that for any fixed ε > 0

lim sup
t→∞

Rt,c ≤ lim sup
t→∞

dte∑
i=1

e−α(i−1)e−(t+c−i)/2(E(U) + ε)|BP[i− 1, i)|.
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Using the fact that e−αi|BP[i − 1, i)| ≤ e−αi|BP[0, i)| a.s.−→ W , simplifying the above
bound and recalling that we used A = E(U), shows that for every fixed ε > 0

lim sup
t→∞

Rt,c ≤W (A+ ε)eα
e−(c−1)/2

1−
√
e
.

Since ε was arbitrary, this completes the proof.
�

Completing the proof of Theorem 5.12:
Recall that we are dealing with bounded characteristics, i.e. ||φ||∞ < C for some

constant C. Without loss of generality, let C = 1. We shall show that there exists a
constant κ such that for all ε > 0,

lim sup
t→∞

|e−αtZφ(t)− m̃φ(∞)R∞| ≤ ε(W + 2κR∞). (5.20)

Since this is true for any arbitrary ε, this completes the proof. Fix ε > 0. First choose c
large such that the bound in Theorem 5.13 satisfies K(c) < ε. Next for fixed s > 0, define
the truncated characteristic φs as

φs(u) =

{
φ(u), u ≤ s
0, u > s

(5.21)

When the branching process is counted by this characteristic, the contribution of all vertices
whose age is more than s is is zero. One can view this as a characteristic used to count
“young” vertices. The limit constant for this characteristic by Proposition 5.8 is

m̃φs(∞) =

∫ s

0
e−αuE(φ(u))du,

where φ is the original characteristic. Note that m̃φs(∞) → m̃φ(∞) as the truncation
level s → ∞. Further, writing φ′ = φ − φs, we can view φ′ as the characteristic counting
scores for “old” vertices (vertices of age greater than s). With this notation we have
Zφ(u) = Zφs(u) + Zφ′(u).

Define

m̃φs(u) = e−αuE(Zφs(u)), u ≥ 0.

Now choose s > c large enough with e−αs < ε such that for all u > s− c one has e−αs < ε,
|m̃φs(∞)− m̃φ(∞)| < ε, and |m̃φs(u)− m̃φs(∞)| < ε. The constructs s and c shall remain
fixed for the rest of the argument.

Let us understand Zφs(·), the branching process counted according to the truncated
characteristic. We first observe that since φs(u) = 0 when u > s, this implies that for
any time t > s, vertices born before time t − s (old vertices) do not contribute to Zφs(t).
Define I(t − s) as the collection of individuals born after time t − s whose parents were
born before time t. Then Zφs(t) decomposes as

Zφs(t) =
∑

v∈I(t−s)

Zvφs(t− σv)

where Zvφs(t− σv) are the contributions to Zφs(t) by the descendants of a vertex v born in

the interval [t− s, t]. Note that by construction, the parent of such a vertex v belongs to
BP(t− s). Further, recall that in the definition of Rt,c in (5.11) we used I(t− s, c) for the
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set of vertices born after time (t− s+ c) whose parents are born before time t− s. Then
we can further decompose the above sum as

Zφs(t) =
∑

x∈I(t−s)\I(t−s,c)

Zxφs(t− σx) +
∑

x∈I(t−s,c)

Zxφs(t− σx)

To simplify notation, write N (t − s, c) = I(t − s) \ I(t − s, c), i.e. the set of individuals
born in the interval [t− s, t− s+ c] to parents who were born before time t− s. Then we
can decompose the difference as a telescoping sum:

e−αtZφ(t)− m̃φ(∞)R∞ :=

7∑
j=1

Ej(t). (5.22)

The definition of these seven terms {Ei(t) : 1 ≤ i ≤ 7} are as follows:

(a) E1(t) is defined by setting

E1(t) = e−αtZφ′(t), t ≥ 0.

Observe that for E1(t), the only vertices that contribute are those with age greater
than s (since φ′(u) = 0 for u < s). In particular E1(t) = e−αtZφ′(t) ≤ e−αt|BP(t− s)|.
Thus by Proposition 5.4, one has lim supt→∞E1(t) ≤ e−αsW ≤ εW a.s. by choice of
s.

(b) E2(t) is defined by setting

E2(t) :=
∑

x∈N (t−s,c)

e−ασx
[
e−α(t−σx)Zxφs(t− σx)− m̃φs(t− σx)

]
.

Note that since in the above sum x ∈ N (t− s, c), thus σx > t− s. Thus

|E2(t)| ≤ e−α(t−s)|N (t− s, c)|
∑

x∈N (t−s,c) e
−α(t−σx)Zxφs(t− σx)− m̃φs(t− σx)

|N (t− s, c)|
For E2(t), N (t − s, c) consists of all children of parents in BP(t − s) that are born
in the interval [t − s, t − s + c]. Thus |N (t − s, c)| ≤ BP(t − s + c). In particular

lim supt→∞ e
−α(t−s)|N (t− s, c)| ≤Weαc. Further, each of the individuals in BP(t− s)

reproduce at rate at least 1. One can check by the strong law of large numbers that
lim inft→∞ |N (t−s, c)|/|BP(t−s)| ≥ c almost surely. Finally the terms in the summand
(conditional on BP(t−s)) are independent random variables and each such term in the
sum looks like X − E(X), where X is stochastically bounded by the random variable
Zφs(c). A strong law of large numbers argument shows that lim supt→∞ |E2(t)| = 0
a.s.

(c) E3(t) is defined as

E3(t) :=
∑

x∈N (t−s,c)

e−ασx (m̃φs(t− σx)− m̃φs(∞)) .

By the choice of s since t − σx ≥ s − c, |m̃φs(t − σx) − m̃φs(∞)| ≤ ε. Thus one has
|E3(t)| ≤ εRt. Letting t→∞, one gets lim supt→∞ |E3(t)| ≤ εR∞ a.s.

(d) E4(t) is defined as

E4(t) := m̃φs(∞)

 ∑
x∈N (t−s,c)

e−ασx −Rt−s

 .
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For E4(t), we have |
(∑

x∈N (t−s,c) e
−ασx −Rt−s

)
| = Rt−s,c. Thus

lim sup
t→∞

E4(t) ≤ m̃φs(∞)K(c)W ≤ m̃φ(∞)εW,

almost surely by Theorem 5.13 for the asymptotics ofRt,c. Here we have used m̃φs(∞) ≤
m̃φ(∞) and that our choice of c guarantees K(c) < ε. To ease notation for the rest of
the proof, let κ be a constant chosen such that max(supu,s≥0(m̃φs(u)), m̃φ(∞)) < κ.
The uniform boundedness of φ guarantees that this can be done. By choice κ is indepen-
dent of s, u. Thus the bound for the fourth term simplifies to lim supt→∞E4(t) ≤ κεW .

(e) E5(t) is defined by setting E5(t) := m̃φs(∞)(Rt−s − R∞). Since Rt−s
a.s.−→ R∞,

E5(t)
a.s.−→ 0.

(f) E6(t) is defined by setting E6(t) := R∞(m̃φs(∞)− m̃φ(∞)). By choice of s, |E6(t)| ≤
εR∞.

(g) E7(t) is defined by setting

E7(t) := e−αt
∑

v∈I(t−s,c)

Zvφs(t− σv) (5.23)

=
∑

v∈I(t−s,c)

e−ασv
(
exp(−α(t− σv))Zvφs(t− σv)− m̃φs(t− σv)

)
+

∑
v∈I(t−s,c)

exp(−αt)m̃φs(t− σv).

Using the strong law of large numbers and arguing as in (b) shows that the first term
goes to zero as t→∞ a.s. Using the constant κ defined in (d) above we get∑

v∈I(t−s,c)

exp(−αt)m̃φs(t− σx) ≤ κ
∑

v∈I(t−s,c)

exp(−ασx) = κRt−s,c

Using Theorem 5.13 and the choice of c and letting t→∞, we get

lim sup
t→∞

E7(t) ≤ εκR∞ a.s.

Combining all these bounds, one finally arrives at

lim sup
t→∞

|e−αtZφ(t)− m̃φ(∞)R∞| ≤ ε(W + 2R∞ + κ(W +R∞)) a.s.

Since ε > 0 was arbitrary, this completes the proof. �

5.5. Time of first birth asymptotics. For a rooted tree with root ρ (here ρ = v1), there
is a natural notion of a generation of a vertex v. This is defined as the number of edges on
the path between v and ρ. Thus ρ belongs to generation zero, all the neighbors of ρ belong
to generation one, and so forth. The aim of this Section is to define a modified notion of
generation in BP(t), owing to the fact that the surgery operation as constructed in Section
5.2 that sets up a method to go from the continuous time model to the discrete time model
implies that the object of study are the number of edges to the closest red vertex on the
path to the root v1. For each fixed k, we shall define stopping times Bir(k) representing
the first time an individual in modified generation k is born into the process BP(·). We
study asymptotics of Bir(k) as k → ∞. In the next Section we use these asymptotics to
understand height asymptotics for the Superstar Model.
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Fix t > 0. For each vertex v ∈ BP(t) let r(v) denote the first red vertex on the path
from v to the original progenitor of the process BP(·) namely v1. If v is a red vertex then
r(v) = v. Let d(v) be the number of edges on the path between v and r(v) so that d(v) = 0
if v is a red vertex.

Fix k ≥ 1. Let Bir(k) denote the stopping times

Bir(k) = inf {t > 0 : ∃ v ∈ BP(t), d(v) = k} .

In other words, Bir(k) is the first time that there exists a red vertex in BP(t) such that
the subtree consisting of all blue descendants of this vertex and rooted at this red vertex
has an individual in generation k. Here we use Bir to remind the reader that this is the
time of the first birth in a particular generation. The next theorem proves asymptotics
for these stopping times.

Theorem 5.15. Let Lam(·) be the Lambert function [11]. We have

Bir(k)

k

a.s.−→ Lam(1/e)

1− p
as k →∞.

Proof of Theorem 5.15: Given any rooted tree T and v ∈ T , we shall let G(v) denote
the generation of this vertex in T . Write BPv1b (·) for the subtree consisting of all blue
descendants of the original progenitor v1 and rooted at v1. In distribution this is just a
single type continuous time branching process where each vertex has the same distribution
as the process Yu1−p(·)− 1. Further let

Bir∗(k) = inf
{
t : ∃ v ∈ BPv1b (t), G(v) = k

}
.

In words, this is the time of first birth of an individual in generation k for the branching
process BPv1b (·). From the definitions of Bir(k),Bir∗(k), we have Bir(k) ≤ Bir∗(k).

Much is know about the time of first birth of a single type supercritical branching
process, in particular implies that for BPv1b (·), there exists a limit constant β such that

Bir∗(k)/k
a.s.−→ β

Here β can be derived as follows. Write µb for the expected intensity measure of the blue
offspring, i.e. as in Lemma 5.5

µb([0, t]) = E(cB[v1, t]) = e(1−p)t − 1, t ≥ 0.

For θ > 0, let

Φ(θ) := E(

∫ ∞
0

e−θtcB(v1, dt)), θ ∈ R.

It is easy to check that this is finite only for θ > 1− p since

Φ(θ) = θ

∫ ∞
0

e−θtµb([0, t])dt =
1− p

θ − (1− p)
.

For a > 0 define

Λ(a) := inf
{

Φ(θ)eθa : θ ≥ 1− p
}

= (1− p)ae(1−p)a+1. (5.24)

Then by [18, Theorem 5] the limit constant β is derived as

β = sup {a > 0 : Λ(a) < 1} . (5.25)
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From this it follows that β = Lam(1/e)/(1 − p) where Lam(·) is the Lambert function.
Then we have

lim sup
k→∞

Bir(k)

k
≤ lim

k→∞

Bir∗(k)

k

a.s.−→ W (1/e)

1− p
.

This gives an upper bound in Theorem 5.15. Lemma 5.16 proves a lower bound and
completes the proof.

Lemma 5.16. Fix any ε > 0 and let β = Lam(1/e)/(1− p) be the asserted limit constant.
Then

∞∑
l=1

P(Bir(l) < (1− ε)βl) <∞.

Thus one has lim inf l→∞Bir(l)/l ≥ β a.s.

Proof: For ease of notation, for the rest of this proof we shall write tε(l) = (1 − ε)βl.
In the full process BP(·), two processes occur simultaneously:
(a) New “roots” (red vertices) are created. Recall that we used R(·) for the counting
process for the number of red roots.
(b) The blue descendants of each new root have the same distribution as a single type
continuous time branching process with offspring process have the same distribution as the
process Yu1−p(·)− 1.

Fix l ≥ 2 and suppose a new red vertex v was created at some time σv < tε(l). Let
BPvb (·) denote the subtree of blue descendants of v. Let Bir∗(v, l) > σv be the time of
creation of the first blue vertex in generation l for subtree BPvb (·). Now Bir(l) < tε(l)
if and only if there exists a red vertex v born before tε(l) such that the subtree of blue
descendants of this vertex has a vertex in generation l by this time. For a fixed red vertex

v ∈ BP(·), write Av(l) for this event. Since Bir∗(v, l)−σv
d
= Bir∗(l), conditional on BP(σv)

one has

P(Av(l)|BP(σv)) = P(Bir∗(l) ≤ tε(l)− σv)
Fix 0 < s < (1− ε)βl. Then for θ > 1− p, Markov’s inequality implies

P(Bir∗(l) < (1− ε)βl − s) ≤ eθ((1−ε)βl−s)E[e−θBir∗(l)]

One of the main bounds of Kingman ([18, Eqn 2.5, Theorem 1]) is E[e−θBir∗(l)] ≤ (Φ(θ))l.
Thus we get

P(Bir∗(l) < (1− ε)βl − s) ≤ [Φ(θ)eθ(1−ε)β]le−θs. (5.26)

By the definition of β,

Λε := Λ(β(1− ε)) := inf
{

Φ(θ)eθ(1−ε)β : θ > 1− p
}
< 1.

where Λ is as in (5.24). It is easy to check that the minimizer occurs at

θε = 1− p+
1

(1− ε)β
.

The final probability bound we shall use is

P(Bir∗(l) < (1− ε)βl − s) ≤ [Λε]
le−θεs. (5.27)
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Let N ε
l be the number of red vertices born before time tl(ε) whose trees of blue descendants

BPvb (·) have at least one vertex in generation l by time tε(l). Obviously P(Bir(l) < (1 −
ε)βl) ≤ E(N ε

l ). Conditioning on the times of birth of red vertices one gets

E(N ε
l ) ≤

∫ tε(l)

0
[Λε]

ldE(R(s)) using Eqn. (5.27),

= p[Λε]
l

∫ tε(l)

0
e−(θε−q)sds using Lemma 5.5.

Simplifying, we get for all l ≥ 2, E(N ε
l ) ≤ C[Λε]

l for a constant C. Thus
∞∑
l=1

P (Bir(l) < (1− ε)βl) <∞.

�

6. Proofs of the main results

Recall the equivalence created by the surgery operation between the superstar model and
the two-type branching process as established in Section 5.2. We shall use this equivalence
and the proven results on BP(·) in Section 5 to complete the proof of the main results. We
record the following fact about the asymptotics for the stopping times τn.

Lemma 6.1 (Stopping time asymptotics). The stopping times τn satisfy

τn −
1

2− p
log n

a.s.−→ − 1

2− p
logW.

Proof: Proposition 5.4 proves that |BP(t)|e−(2−p)t a.s.−→W . Thus ne−(2−p)τn a.s.−→W . �
Let us now start by proving the main results. We note that Theorem 2.1 is obvious since

the degree of the superstar is given by R(τn) =
∑n

i=1 11 {vi is red}, the total number of red
vertices and (11 {vi} is red )i≥1 is an iid sequence with with Bernoulli p as the marginal
distribution. We now prove the remaining results using the correspondence between the
continuous time and discrete time processes.

6.1. Proof of the degree distribution strong law. In this Section we shall prove
Theorem 2.2. Since Gn+1 is a connected tree, every vertex has degree at least one. Recall
that cB(v, t) denotes the number of blue children of vertex v by time t. Write deg(v,Gn+1)
for the degree of a vertex in Gn+1. The surgery operation implies that for any non-superstar
vertex

deg(v,Gn+1) = cB(v, τn) + 1. (6.1)

Fixing k ≥ 0, the number of non-superstar vertices with degree exactly k + 1 is the same
as the number of vertices in BP(τn) that have exactly k blue children. Recall that we used
Z≥k(t) for the number of vertices in BP(t) that have at least k blue children. Proposition
5.4, showed that the total number of vertices |BP(t)| satisfies

e−(2−p)t|BP(t)| a.s.−→ W ∗

(2− p)
, as t→∞. (6.2)

Theorem 5.6 showed that

e−(2−p)tZ≥k(t)
a.s.−→ k!

k∏
i=1

(
i+

2− p
1− p

)−1 W ∗

2− p
.
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Thus writing p≥k(t) = Z≥k(t)/BP(t) for the proportion of vertices with degree k, Theorem
5.6 implies one has

p≥k(t)
a.s.−→ k!

k∏
i=1

(
i+

2− p
1− p

)−1

:= p≥k(∞), as t→∞.

Now let k ≥ 1. Writing N≥k(n) for the number of vertices with degree at least k in Gn+1,

one has N≥k(n)/n
a.s.−→ p≥k−1(∞) as n→∞. Thus the proportion of vertices with degree

exactly k converges to p≥k−1(∞)− p≥k(∞) = νSM (k). This completes the proof. �

6.2. Proof of maximal degree asymptotics. The aim of this is to prove Theorem 2.4.
We wish to analyze the maximal non-superstar degree that we wrote as

Υn = max {deg(vi, Gn+1) : 1 ≤ i ≤ n} .
The plan will be as follows: we will first prove the simpler assertion of convergence of the
degree of vertex vk for fixed k ≥ 1. Then we shall show that given any ε > 0, we can
choose K such that for large n, the maximal degree vertex has to be one of the first K
vertices v1, v2, ..., vK with probability greater than 1− ε. This completes the proof.

Fix k ≥ 1. Recall from (6.1) that deg(vk, Gn+1) = cB(vk, τn) + 1 where cB(vk, t) are the
number of blue vertices born to vertex k by time t. Recall that cB(vk, t) is a Yule process
of rate 1− p started at time τk (i.e. at the birth of vertex vk). By Lemma 5.3,

cB(vk, t)

e(1−p)(t−τk)

a.s.−→W ′k, (6.3)

where W ′k is an exponential random variable with mean one. Write γ = (1 − p)/(2 − p)
and let ∆k = e−(1−p)τkW ′W−γ . Using (6.2) and (6.3) we have

n−γ deg(vk, Gn+1) =
cB(vk, τn−1) + 1

e(1−p)(τn−1−τk)

(
e(2−p)τn−1

|BP(τn−1)|+ 1

)γ
e−(1−p)τk

a.s.−→W ′kW
−γe−(1−p)τk := ∆k.

Now let us prove distributional convergence of the properly normalized maximal non-
superstar degree Υn. Fix L > 0 and let

M̃n[0, L] := max {deg(vk, Gn+1) : τk ≤ L} . (6.4)

In other words, this is the largest degree in Gn+1 amongst all vertices born before time L
in BP(·). The convergence of the degree of vk for any k ≥ 1 implies the next result.

Lemma 6.2 (Convergence near the root). Fix any L > 0. Then there exists a random
variable ∆∗[0, L] > 0 such that

n−γM̃n[0, L]
a.s.−→ ∆∗[0, L].

where γ = (1− p)/(2− p)

Now if we can show that with high probability, Υn = M̃n[0, L] for large finite L as
n → ∞, then we are done. This is accomplished via the next Lemma. Recall that by
asymptotics for the stopping times τn in Lemma 6.1, given any ε > 0, we can choose
Kε > 0 such that

lim sup
n→∞

P
(∣∣∣∣τn − 1

2− p
log n

∣∣∣∣ > Kε

)
≤ ε. (6.5)
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For any 0 < L < t, let BP(L, t] denote the set of vertices born in the interval (L, t].
Recall that we used v1 for the original progenitor. For any time t and v ∈ BP(t), let
degv(t) = cB(v, t) + 1 denote the degree of vertex v in the superstar model G|BP(t)|+1

obtained through the surgery procedure. For fixed K and L, let An(K,L) denote the
event that for some time t ∈ [(2− p)−1 log n±K], there exists a vertex v in BP(L, t] with
degv(t) > degv1(t).

Lemma 6.3 (Maxima occurs near the root). Given any K and ε, one can choose L > 0
such that

lim sup
n→∞

P(An(K,L)) ≤ ε.

In particular, given any ε > 0, we can choose L such that

lim sup
n→∞

P(Υn 6= M̃n([0, L])) ≤ ε.

Deferring the proof of this result note that Lemma 6.2 now coupled with the above

Lemma now shows that there exists a random variable ∆∗ such that Υn/n
γ P−→ ∆∗,. This

completes the proof of Theorem 2.4.
Proof of Lemma 6.3: For ease of notation, write

t−n = (2− p)−1 log n−K, t+n = (2− p)−1 log n+K.

Since the degree of any vertex is an increasing process it is enough to show that we can
choose L = L(K, ε) such that as n→∞, the probability that there is some vertex born in
the time interval [L, t+n ] whose degree at time t+n is larger than the degree of the root v1

at time t−n is smaller than ε. Let M[L,t+n ](t
+
n ) denote the maximal degree by time t+n of all

vertices born in the interval [L, t+n ]. Then for any constant C > 0

P(An(K,L)) ≤ P
({

degv1(t−n ) < Cnγ
}
∪
{
M[L,t+n ](t

+
n ) > Cnγ

})
≤ P

(
degv1(t−n ) < Cnγ

)
+ P

(
M[L,t+n ](t

+
n ) > Cnγ

)
.

Since the offspring process of v1 has the same distribution as a rate (1− p) Yule process

e−(1−p)t−n degv1(t−n ) = e(1−p)K/2 degv1(t−n )

nγ
a.s.−→Wv1

where Wv1 has an exponential distribution with mean one. Thus for a fixed K, we can
choose C = C(ε) large enough such that

lim sup
n→∞

P
(
degv1(t−n ) < Cnγ

)
≤ ε/2.

Thus for a fixed ε, C,K, it is enough to choose L large such that

lim sup
n→∞

P
(
M[L,t+n ](t

+
n ) > Cnγ

)
≤ ε/2.

Without loss of generality, we shall assume throughout that Lε and t+n are integers. For
any integer Lε < m < t+n − 1, let M[m,m+1](t

+
n ) denote the maximum degree by time t+n of

all vertices born in the interval [m,m+ 1]. Then

M[L,t+n ](t
+
n ) = max

L≤m≤t+n−1
M[m,m+1](t

+
n ).
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Let |BP[m,m+1]| denote the number of vertices born in the time interval [m,m+1]. Since
for a vertex born at some time s < t+n , the degree of the vertex at time t+n has distribution
Yu1−p(t

+
n − s), an application of the union bound yields

P
(
M[L,t+n ](t

+
n ) > Cnγ

)
≤

t+n−1∑
m=L

E(|BP[m,m+ 1]|)P(Yu1−p(t
+
n −m) > Cnγ).

Now E(BP[m,m+ 1]) ≤ E(|BP(m+ 1)|). By Proposition 5.4, E(|BP(t)|) ≤ e(2−p)t. Further
by Lemma 5.3, for fixed time s, a rate 1−p Yule process has a geometric distribution with
parameter e−(1−p)s. Thus we have

P
(
M[L,t+n ](t

+
n ) > Cnγ

)
≤

t+n−1∑
m=L

Ae(2−p)m
[
1− e−(1−p)(t+n−m)

]Cnγ

≤
t+n−1∑
m=L

Ae((2−p)m−Ce(1−p)(m−K)) (6.6)

where last inequality follows from the fact that for 0 ≤ x ≤ 1, 1− x ≤ e−x and

et
+
n /2 = nγe(1−p)K .

Now choosing L large, one can make the right hand side of the last inequality as small as
one desires and this completes the proof.

�

6.3. Proof of logarithmic height scaling. The aim of this section is to complete the
proof of Theorem 2.5. Let us first understand the relationship between the distances in
BP(τn) and Gn+1 due to the surgery operation. The distance of all the red vertices in
BP(τn) from the superstar v0 is one. For each blue vertex v ∈ BP(τn), let r(v) denote
the first red vertex on the path from v to the root v1 in BP(τn). Recall from Section 5.5
that d(v) denoted the number of edges on the path between v and r(v) with d(v) = 0 if v
was a red vertex. Then the distance of this vertex from the superstar v0 in Gn+1 is just
d(v) + 1 since the vertex needs d(v) steps to get to r(v) that is then directly connected to
v0 in Gn+1 by an edge. Let D(u, v) denote the graph distance between vertices u and v in
Gn+1. Since by convention d(v) = 0 for all the red vertices, this argument shows that for
all v 6= v0 ∈ Gn+1, D(v, v0) = d(v) + 1. In particular the height of Gn+1 is given by

H(Gn+1) = max {d(v) + 1 : v ∈ BP(τn)} . (6.7)

Now by the definition ofH(Gn+1), there is a vertex in BP(τn) such that d(v) = H(Gn+1)−1
but no vertex with d(v) = H(Gn+1). Recall the stopping times Bir(k), defined as the first
time a vertex with d(v) = k is born in BP(·). Thus we have

Bir(H(Gn+1)− 1) ≤ τn ≤ Bir(H(Gn+1)). (6.8)

Now recall that Theorem 5.15 showed that the stopping times Bir(k) satisfy

Bir(k)/k
a.s.−→ Lam(1/e)/(1− p) as k →∞.

Dividing (6.8) throughout by H(Gn+1) by Theorem 5.15

Bir(H(Gn+1)− 1)

H(Gn+1)

a.s.−→ Lam(1/e)

1− p
,
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while by Lemma 6.1 we get
τn

log n

a.s.−→ 1

2− p
.

Rearranging shows that
H(Gn+1)

log n

a.s.−→ (1− p)
Lam(1/e)(2− p)

.

This completes the proof. �

6.4. Extension to the variants of the superstar model. We now describe how the
above methodology easily extends to the two variants described in Section 3, namely the
superstar linear preferential attachment and the uniform attachment model (Theorem 3.1
and 3.2). Since the proofs are identical to the original model, modulo the driving continuous
time branching process, we will not give full proofs but rather describe the continuous time
versions that need to be analyzed to understand the corresponding discrete model. The
surgery operation and the subsequent analysis of the continuous time model are identical
to the original superstar model.

For fixed a > −1 and p ∈ (0, 1), we write
{
Glin
n (a, p) : n ≥ 1

}
for the corresponding fam-

ily of growing random trees obtained via following the dynamics of the linear attachment
scheme (see Section 3). We let {Guni

n (p) : n ≥ 1} be the family of random trees obtained via
uniform attachment. Now recall that the analysis of the superstar preferential attachment
model start with the formulation of a continuous time two type branching process (con-
sisting of red and blue vertices). One then performs surgery on this two type branching
process at appropriate stopping times τn as defined in (5.1) to obtain the superstar model.
For the two variants, let us now describe the corresponding continuous time versions.

(a) Superstar linear preferential attachment: We write {BPlin(t)}t≥0 for this branch-
ing process. Here one starts with a single red vertex v1 at time t = 0. Each individual
lives forever. For any fixed t ≥ 0, each individual v ∈ BPlin(t) in the branching process
reproduces at rate

λ(v, t) := cB(v, t) + 1 + a,

where as before cB(v, t) denotes the number of blue children of vertex v at time t. Each
new offspring is colored red with probability p and blue with probability q := 1− p.

(b) Uniform Attachment: Start with a single red vertex v1 at time t = 0. Each in-
dividual reproduces at rate one and lives forever. Each new offspring is colored red
with probability p and blue with probability q := 1 − p. Write {BPuni(t)}t≥0 for this
branching process.

Fix n ≥ 1 and recall the stopping time τn from (5.1), namely the time for the branching
process to reach size n. From section 5.2, recall the surgery operation that takes BP(τn) to
a random tree Sn on n+ 1 vertices. The following Proposition which is the general analog
of Proposition 5.1 showing the equivalence of the continuous time models and the discrete
time versions. The result is stated for the linear preferential attachment model, the same
result is true using the corresponding branching process for the uniform attachment model.

Proposition 6.4. Fix a > −1 and p ∈ (0, 1). Let {BPlin(t) : t ≥ 0} be the continuous
time two type branching process constructed as above for the superstar linear preferen-
tial attachment model with parameters a, p. The sequence of trees {Sn : n ≥ 1} obtained
by performing the surgery operation on {BPlin(τn) : n ≥ 1} has the same distribution as
{Gn+1(a, p) : n ≥ 1}
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Now recall that in the proof of the original superstar model, a major role was played by
Proposition 5.4 which showed that the associated continuous time branching process grew
at rate exp((2 − p)t). This allowed us to make rigorous the following two ideas (see e.g.
the proof of Corollary 5.9):

(a) As t → ∞, the age of an individual chosen uniformly at random from the population
has an exponential distribution with rate (2− p).

(b) For vertex v, let cB(v, σv + t) be the number of blue children t units after being born
and note that {cB(σv + t) : t ≥ 0} has the same distribution for any vertex. Since the
number of blue children of a vertex represents the out-degree in the superstar model
after the surgery operation, using (i), the limiting degree distribution should be the
same as 1 + cB(v1, T ), where T ∼ exp((2− p)) independent of {cB(v1, t) : t ≥ 0}. Here
we use v1 for convenience since σv1 = 0.

The corresponding version of Proposition of 5.4 is the following.

Proposition 6.5. (a) Fix a > −1 and p ∈ (0, 1). Then there exists a random variable
W (a, p) > 0 a.s. such that as t→∞,

exp(−(2− p+ a))|BPlin(t)| a.s.−→W (a, p).

(b) For the uniform attachment model, for any p ∈ (0, 1) as t→∞,

exp(−t)|BPuni(t)|
a.s.−→W,

where W ∼ exp(1).

Proof: We start with part (b). For the uniform attachment model, since every
individual lives forever and reproduces at rate one, the process {|BPuni(t)| : t ≥ 0} has the
same distribution as a rate one Yule process (see Definition 5.2). Then the result follows
from Lemma 5.3.

To prove (a), define the process

M(t) := exp(−(2− p+ a))(|BPlin(t)|+B(t)), t ≥ 0,

where as before B(t) denotes the number of blue individuals in the population by time
t. Arguing exactly as in the proof of Proposition 5.4, it is easy to check that this process
is a martingale. The rest of the proof now follows along the same lines as the proof of
Proposition 5.4.

�
The proof of Theorems 3.1 and 3.2 now proceed as in the analysis of the original model.

For example to show the convergence of the degree distribution for the uniform attachment
model Theorem 3.2, first note that for any vertex v, since this vertex reproduces at rate
one and each new offspring is colored red with probability p and blue with probability
q = 1 − p. Thus the process counting the number of blue children {cB(v1, t) : t ≥ 0} is a
rate q Poisson process. Fix k ≥ 1 and write Z≥k(t) for the number of vertices in BPlin(t)
which have k or more blue offspring by time t. The analogous version of Theorem 5.6 for
the uniform attachment model implies that

exp(−t)Z≥k(t)
a.s.−→ p≥k(∞)W,

where

p≥k(∞) = P(cB(v, T ) ≥ k),
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where T ∼ exp(1) independent of cB(·). Now note that

P(cB(v, T ) ≥ k) = P(
k∑
i=1

ξi ≤ T )

where {ξi}i≥1 is a sequence of independent rate q exponential random variables. Arguing
as in the proof of Corollary 5.9, we get

P

(
k∑
i=1

ξi ≤ T

)
= (E(exp(−ξi)))k =

(
q

q + 1

)k
For the maximal degree, note that by Proposition 6.5 implies that the stopping time τn

as in (5.1) for the time the continuous time branching process grows to be of size n satisfies

τn = log n+OP (1).

Since for each vertex, its true degree is the number of blue offspring, as an easy lower bound,
the root v1 by time τn should have degree ∼ (1− p) log n (since the process describing the
blue offspring of the root is just a rate q Poisson process). To get that log n is the correct
order for the maximal degree and in particular the weak law, one argues as in Section 6.2
(in particular see (6.6)), teasing apart the contribution to this maximal degree of vertices
born at various times. The proof of Theorem 3.1 is similar. We omit the details.
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Appendix

Below we describe each of the thirteen events and show the corresponding event specific
term.

• E = 1: Brazil vs Netherlands soccer match from the 2010 World Cup. The term
is “Brazil” or “Netherlands”.
• E = 2: Basketball player Lebron James announcement of signing with the Miami

Heat. The term is “Lebron”.
• E = 3: The 2010 World Cup Kick-Off Celebration Concert. The term is “World

Cup”.
• E = 4: Brazil vs Portugal soccer match from the 2010 World Cup.. The term is

“Brazil” or “ Portugal”.
• E = 5: Italy vs Slovakia soccer match from the 2010 World Cup. The term is

“Italy” or “Slovakia”.
• E = 6: The 2010 BET Awards show. The term is “BET Awards”.
• E = 7: The firing of General Stanly McChrystal by US President Barack Obama.

The term is “McChrystal”.
• E = 8: The 2010 World Cup Opening Ceremony. The term is “World Cup”.
• E = 9: Mexico vs South Africa soccer match from the 2010 World Cup. The term

is “Mexico”.
• E = 10: England vs Slovakia soccer match from the 2010 World Cup. The term is

“England”.
• E = 11: Portugal vs North Korea soccer match from the 2010 World Cup. The

term is “Portugal”.
• E = 12: Roger Federer’s tennis match in the first round of the 2010 Wimbledon

tournament. The term is “Federer”.
• E = 13: The UN imposing sanctions on Iran. The term is “Iran”.
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