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Abstract Past work on tournaments in iterated prisoner’s dilemma and the evolution
of cooperation spawned by Axelrod has contributed insights about achieving coopera-
tion in social dilemmas, as well as a framework for strategic analysis in such settings.
We present a broader, more extensive framework for strategic analysis in general
games, which we illustrate in the context of a particular social dilemma encountered
in interdependent security settings. Our framework is fully quantitative and computa-
tional, allowing one to measure the quality of strategic alternatives across a series of
measures, and as a function of relevant game parameters. Our special focus on perform-
ing analysis over a parametric landscape is motivated by public policy considerations,
where possible interventions are modeled as affecting particular parameters of the
game. Our findings qualify the touted efficacy of the Tit-for-Tat strategy, demonstrate
the importance of monitoring, and exhibit a phase transition in cooperative behavior
in response to a manipulation of policy-relevant parameters of the game.

Keywords Tournaments · Game theory · Prisoner’s dilemma ·
Interdependent security games

1 Introduction

Contexts of strategic interaction (games) are ubiquitous. They are often momentous in
their consequences. Nations compete with each other in economic markets, for influ-
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ence on global policy, for prestige that builds “soft power,” and on weapons superiority.
Firms compete over consumers, suppliers and access to markets. Individuals interact,
competing for salary and promotion within a work environment. Everyone competes
over scarce resources. In addition, strategic interactions are often fraught with diffi-
culty for their stakeholders, in part because they are complex and in part because they
present challenging tradeoffs between cooperation and competition. Success in war,
diplomacy, business, individual advancement, and appropriation of scarce resources
may be furthered by well-chosen cooperative alliances.

Two problems of fundamental significance arise for those who would study or
participate in such strategic interactions (Kimbrough 2012).

1. Strategy selection. What strategy should a player choose? What are characteristics
of good strategies? How should a player go about choosing a strategy of play?
The strategy selection problem arises for the individual player, who must decide
how to play the game as well, of course, for the scholar who seeks to understand
strategic interaction.

2. Institutional design. What outcomes can be expected for a given strategic setup?
How might the setup be changed in order to achieve preferred policy outcomes?
The institutional design problem arises for the policy maker, and all those who
would influence policy.

Beginning with Axelrod’s landmark studies on iterated prisoner’s dilemma (IPD)
(Axelrod 1980a, b, 1984; Axelrod and Hamilton 1981) and continuing since, game
tournaments—in which collections of strategies for particular games are played with
each other and the outcomes analyzed—have contributed to our understanding of
the strategy selection and institutional design problems. The tournaments have been
studied both analytically and with computerized simulation. IPD games have been the
predominant subject of study, although other games are increasingly drawing scholarly
attention (Skyrms 2010).

In this paper we report on a series of investigations of Interdependent Security
(IDS) games. These games model real-world situations that have important policy
significance, where outcomes are stochastic. (See §3 for a detailed discussion.) More-
over, IDS games are unusual in having stochastic payoffs as an essential part of their
definition. The stochasticity, by virtue of its magnitude, should not be characterized
as mere noise. Recent human subject experiments on IDS games have found that the
stochasticity significantly complicates the strategy selection problem for individuals.
This in turn leads to challenges for policy formulation.

Extending the results of human subject experiments, we undertake an extensive
study of IDS games, using computational tournaments. In doing so, we present a
broader, more extensive framework for strategic analysis in general games than is
normally realized in existing tournament studies. We illustrate this approach in the
context of social dilemmas encountered in IDS settings. Our framework is quantita-
tive and computational, allowing one to measure the quality of strategic alternatives
across a series of measures, and as a function of relevant game parameters. We focus
particularly on performing analysis over a parametric landscape, motivated by public
policy considerations, where possible interventions are modeled as affecting particu-
lar parameters of the game. To preview the results, our findings (in the IDS context)
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qualify the oft-touted efficacy of the Tit-for-Tat strategy, demonstrate the importance
of monitoring, and exhibit a phase transition in cooperative behavior in response to a
manipulation of policy relevant parameters of the game.

We begin, in the next section, with a discussion of related work that either employs
game tournaments or examines games with stochastic elements.

2 Related Work

2.1 Tournaments, Stochasticity

There have been scores of computational game tournaments published since Axel-
rod’s seminal works (Axelrod 1980a, b, 1984; Axelrod and Hamilton 1981). We focus
on a few here that are most pertinent to our study, emphasizing tournaments with
stochasticity of some kind.

Axelrod’s original tournaments are well known, so only the briefest of summaries
is needed. Two tournaments for IPD were held with an open solicitation for strate-
gies. The first tournament elicited 14 entries. These 14 plus Random (the strategy of
randomly cooperating or defecting at each round) were played and their scores were
obtained by summing their points in the pairwise encounters (including play with
themselves). Tit-for-Tat won. The results were announced and a second tournament
was held. The second tournament garnered 62 entries. These 62 plus Random were
played and scored as in the first tournament. Tit-for-Tat won again.

While landmark in their implications, the tournaments and subsequent analyses
that elevated Tit-For-Tat as the best strategy in IPD and other such social dilemma
encounters have a number of shortcomings.1

– The analyses were performed for a single payoff structure of Prisoner’s Dilemma
games, and it is not clear from Axelrod’s studies how sensitive the results were
to alternative payoff structures. In the laboratory also, only very few payoff con-
figurations are generally tested, making it difficult to understand the impact of
particular payoff choices on the results.

– Although tournament competition is appropriate for identifying a candidate best
strategy, in reality the weakest strategies featured in any tournament are unlikely to
be played. Consequently, a good strategy should also fare well against a select few
high quality strategies, not just all strategies participating in a particular strategic
pool.

– While measuring the quality of strategies in terms of their payoffs is quite natural
and reasonable, it does not account for uncertainty associated with the specific
strategies that would be played by opponents in an actual strategic encounter.
One often wishes a strategy to be efficacious against a specific pool of possible
opponents and to be robust to variations in particular opponents that could possibly
be encountered. At a high level, much of the previous analysis of IPD games that
followed in the footsteps of Axelrod focuses on building evidence for Tit-For-Tat as
the means for evolution of cooperation, rather than offering an objective strategic

1 Following publication of the tournaments there ensued a flurry of studies pointing to shortcomings in
Tit-for-Tat and offering alternatives, e.g., (Nowak and Sigmund 1993).
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analysis with insights for public policy [see, for example Bartholdi et al. (1986);
Thomas and Feldman (1988), and numerous other follow-up analyses]. We take
this latter perspective.

It is useful to distinguish various possible sources or kinds of stochasticity in games.

1. Incomplete information. This arises when a player is uncertain about the payoffs of
its counterpart(s), as may occur, for example, in auctions. The standard treatment
of such situations takes a Bayesian approach, yielding Bayesian equilibria and
perfect Bayes equilibria as solution concepts. We are not concerned in the present
study with incomplete information in this sense.

2. Stochastic strategies. Players may have strategies that involve some form of ran-
domization, as in, for example, mixed strategies in standard game theory. Our study,
as do many of the related studies cited in this section, encompasses strategies with
such a random component.

3. Accidents, implementation errors. These occur when a player intends to imple-
ment one strategy, but ends up playing another. This is commonly referred to as
“trembling” or “trembling hand” in the game theory literature (Harsanyi and Sel-
ten 1988). This source of stochasticity has been studied extensively, but it is not
the subject of our study.

4. Stochasticity in payoffs. This occurs when the game payoff values are random
variables. Two kinds of stochastic payoffs have been studied in the literature. The
first is noise, which occurs as small perturbations in the payoff values realized.
Typically (e.g., Bendor 1993; Bendor and Kramer 1991; Rogers et al. 2007), noise
is realized by adding a random deviate to the deterministic game payoffs, which
is independently and identically distributed for all players and periods [but see
Bereby-Meyer and Roth (2006)]. The second is what we will call strategically
conditioned stochasticity, where the distribution of noise depends on the strategies
played by the players. It is present in IDS games and is the main variety of game
stochasticity encompassed in our study.

Note on terminology: the literature is inconsistent in the terminology actually
deployed. Much of the literature uses noise where we would use accident or trem-
bling. We will indicate when this is the case. Noise in our preferred sense constitutes
a form of stochasticity in payoffs.

Payoff stochasticity of the first kind—errors of implementation, trembling—has
been the subject of several investigations, both analytic and computational. An early
analytic study (Fudenberg and Maskin 1990) examined evolutionary stability of strate-
gies for IPD in the face of trembling and found that modest amounts of noise of this
type (accidents, trembling) tended to favor cooperation. Bendor developed a differ-
ent analytic approach and found that both accidents and payoff stochasticity could
facilitate cooperation in IPD, although the picture is complex (Bendor 1993). More
recently, Pelc and Pelc (2009) undertook an analytic study of strategies in IPD. The
focus was primarily on non-stochastic versions. The analysis, however, relied on pay-
offs in the limit, so that, for example, when Tit-for-Tat plays against Always Defect
the two strategies are judged to have identical returns. The paper develops a notion
of robustness for pairwise tournaments, which, depending as it does on returns in the
limit, may be applied to certain kinds of stochasticity.
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On the computational side, Wu and Axelrod considered three main strategies for
IPD with respect to “noise” (trembles or accidents in our terminology; Wu and Axel-
rod 1995). Already at the time (1995) there had been a number of computational
tournament studies—cited in the paper—of stochasticity in games brought about by
accidents. The three strategies (or families of strategies) investigated by Wu and Axel-
rod were Generous Tit-for-Tat (GTFT), which is like Tit-for-Tat, but when Tit-for-Tat
would defect, 10 % of the time GTFT cooperates; Contrite Tit-for-Tat (CTFT), which
cooperates after it accidentally defects; and Win-Stay, Lose-Shift (WSLS, which coop-
erates except if on the previous move it cooperated and the counterpart defected or
it defected and the counterpart cooperated; this strategy is also called Pavlov in the
literature). Creating four strategies from these three families, they added them to the
63 strategies in Axelrod’s second IPD tournament and studied the effects of introduc-
ing small amounts of trembling (about 1%). GTFT won at 1% and CTFT did well,
although their relative position was sensitive to the rate of trembling. In a subsequent
ecological (or replicator dynamic) study, CTFT was the clear winner.

An early study (Marinoff 1992) re-considered the iterated Tit-for-Tat results of the
Axelrod tournaments by investigating 20 strategies deliberately chosen to represent
five “families” of strategies. Many of the strategies incorporated stochasticity, for
example by cooperating with a certain probability under specified conditions. Using
Axelrod’s deterministic stage game payoffs, Marinoff investigated the rank robustness
of the 20 strategies in all combinations (all 20Cn, 1 ≤ n ≤ 20 distinct tournament pop-
ulations). In addition, Marinoff conducted tournaments on the ecological (or replicator
dynamics) setup, also investigated by Axelrod. Across three measures of “robustness,”
and using the results of the two kinds of tournaments, Marinoff found Tit-for-Tat to
be a generally good performer, but a noticeably poorer performer than several of the
other strategies among the 20.

A recent experimental study (Fudenberg et al. 2010) examines play of IPD when
there is stochasticity in the implementation of strategic choices (accidents, trembling,
although the paper uses the term noise). The subjects reported using 20 different
strategies. The study found substantial amounts of cooperative play by the subjects.

Finally, a recent major tournament (Rendell et al. 2010) investigated social learning
in the context of a non-stationary multi-armed bandit. At each round of play, agents
could choose one of three kinds of moves: Innovate (individual, asocial trial-and-error
learning by manipulation of the environment); Observe (social learning, including
copying of behavior by another agent); and Exploit (figuratively pull on one of the
bandit’s arms and, here only, be able to receive a reward). In all 104 entries were
received and evaluated. The study found, among other things, that winning strategies
invested heavily in social learning, at the expense of asocial learning. This general
result was found to be stable in extensive robustness (or sensitivity) studies.

2.2 Desiderata for Strategic Choice

Our multi-criteria framework for strategy selection in games is closely related to the
stream of literature on multi-agent learning in repeated games, where multiple desider-
ata are commonly considered for algorithmic comparison (Littman 1994; Bowling and
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Veloso 2002; Greenwald and Hall 2003; Bowling 2004; Powers and Shoham 2005;
Zawadzki et al. 2008). The history of this literature is largely that of proposing either
a new algorithm that outperforms previous approaches on the same set of criteria, or a
new collection of desiderata, together with an algorithm that performs well on these. As
such, there is an implicit problem of strategy selection, that is, to guide one to choose
a single learning algorithm from many options, which is an explicit aim of our work.

The criteria considered in this literature tend to be focused on the multi-agent
learning context, and often are not generically meaningful. For example, the oldest
criteria are convergence to a stage-game equilibrium in self-play and convergence to
a best response against stationary opponents (Bowling and Veloso 2002), and newer
desiderata that involve asymptotic no-regret learning guarantees (Bowling 2004). Any
notion involving a stage-game solution concept, however, is fundamentally restricted
to repeated games, and even convergence to equilibrium in self-play has been con-
vincingly criticized in that context (Powers and Shoham 2005). Zawadzki et al. (2008)
empirically compare a wide variety of multi-agent learning strategies on several classes
of games using many of the desiderata proposed in the literature. Indeed, some of their
criteria are closely related to ours. For example, they consider average reward in tour-
naments, just as we do. Most of the criteria they use, however, are specific to learning
in repeated games (for example, no-regret criteria and convergence in self-play), and
are, consequently, not generic.

3 Interdependent Security Games: Preliminaries

Imagine you live in a large condominium and there is a one-time opportunity to invest
in fire-protection infrastructure. Specifically, for a price, you can have a sprinkler
system installed in your apartment. If the sprinkler system is installed and a fire ever
starts in your apartment (from whatever cause), you may assume that the system will
reliably extinguish the fire and that any damage will be minimal. Your neighbors are
also facing the same one-time decision. The complication in all of this is that even if
you install a sprinkler system, if your neighbor does not and happens to experience
a fire, the collateral damage to your flat will be the same as if you had not installed
the sprinkler system and had had the fire yourself. Under what conditions would you
elect to install the sprinkler system?

This is an example of what is called an interdependent security (IDS) game
(Kunreuther and Heal 2003; Heal and Kunreuther 2005b). What is characteristic of
these strategic situations is the possibility that a player may be harmed (“contami-
nated”) through inaction by other players in investing in security, even if the player
itself invests in security. When other players do not invest in risk reduction, the possibil-
ity of contamination (from realized risk events they experience) reduces the incentive
for a player to invest for itself. Heal and Kunreuther (2005a) discuss the wide scope
of applicability of these games, played either as one-shot games or as stage games in
an iterated supergame. Examples include: airline security, industrial accidents (e.g.,
chemical plants, nuclear power plants), protecting buildings against terrorist attacks,
protecting against risky behavior by other members and divisions of an organization
(e.g., rogue traders, risk-seeking business units), and protecting networked computers
from security violators.
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Characteristic of IDS games is that the payoffs are given as lotteries (except when all
players invest in protection). If you do not invest in a sprinkler you are exposed to the
risk of a fire. If your neighbor does not invest, you are exposed to the risk of contagion
damage if the neighbor has a fire. It is usual to represent games as having fixed and
certain payoffs, rather than lottery payoffs. Standard solution techniques require this.
Indeed, a main benefit of representing payoffs as utilities is that the decision maker
is, in theory, indifferent between the expected value of a lottery whose outcomes are
given in utilities and the lottery itself. If so, then any lottery outcome can be reduced
to a certain outcome, its expected value. A similar situation often obtains when game
models are applied in biology and the payoffs are given in fitnesses, usually defined as
expected number of offspring. Roughgarden (2009) presents several nice examples.
The main point for our purposes is that if payoffs are denominated in utilities or in
expected numbers of offspring, then it is plausible to collapse lotteries into expected
values.

And if not, perhaps not. Behavioral experiments (e.g., Kunreuther et al. 2009; Xiao
and Kunreuther 2010) have indicated systematic differences in subjects’ behavior
between IDS games (with lottery payoffs) and their deterministic analogs (with lot-
teries replaced by their expected values). Setting the payoffs so that the games are
Prisoner’s Dilemmas (stochastic or deterministic), Kunreuther et al. find generally
less cooperation in the stochastic IDS case than in the deterministic version of the
game (Kunreuther et al. 2009). Even if we stick with conventional game theory, the
fact that payoffs are realized through lotteries presents new strategic considerations,
at least if we are modeling human players, whose choices may be affected. A player,
for example, may choose to act in one way after experiencing the consequences of a
security event and act in another way when the security event does not occur.

In sum, IDS games have lottery payoffs, model classes of phenomena of consider-
able import, are sources of anomalous behavior in subjects (at least from the point of
view of classical game theory), and present challenges to policymaking (how to pro-
mote socially-useful investment?). In this paper we report on a computational strategic
analysis of IDS games. Our goal is, when analytic methods are insufficient, to develop
computational means and principles for understanding, and supporting intervention
in, systems of strategically interacting agents. To this end, what follows reports on our
exploratory development of such principles in the context of IDS games.

3.1 IDS Stage Game

The one-shot two-player IDS game, which is the stage game of the iterated interactions
we study, represents the impact of externalities from player decisions about investing
in security. Investing in security is costly, a fact that the model captures via a cost
parameter c. Not investing in security results in a direct exposure to risk (we refer to the
resulting loss as direct loss), that is, exposure due entirely to the player’s own decision.
We let p denote the probability of suffering a direct loss (say, due to a fire when a player
chooses not to install sprinklers), with L denoting the actual (expected) magnitude of
loss. Additionally, no matter what a player does, his counterpart’s decision has an
impact (an externality), but only if the counterpart does not invest in security. A
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Fig. 1 A stage game of the iterated IDS game

consequence of a player’s decision not to invest is that his counterpart may suffer a
loss indirectly, i.e., due solely to someone else’s decision (we refer to the loss that
results as indirect loss and denote its probability by q). However, a player only suffers
an indirect loss if (a) he does not suffer a direct loss and (b) his counterpart does suffer
a direct loss (again, thinking about a decision to install fire sprinklers, the fire spreads
to a neighbor only if there is a fire at all, and only if the neighbor’s apartment has not
already burned down). The formal payoff matrix of an IDS stage game, with payoffs
given in expected costs, is shown in Fig. 1. To connect the formalization with our
description above, consider the payoff entry when both players player “Don’t Invest”,
in which case each player’s expected loss is −pL − (1− p)qpL . This loss reflects the
underlying principle that “you only die once”, that is, either a direct loss is incurred
with probability p, or, when it is not incurred [with probability (1 − p)], the indirect
loss to the player is incurred only when his counterpart first incurs a direct loss (with
probability p), and this loss is transferred to this player (with probability q).

The following is a complete characterization of the pure strategy equilibria of the
IDS stage game:2

1. Invest is a (strictly) dominant strategy equilibrium iff c < pL − p2q L;
2. Invest is a Nash equilibrium iff c ≤ pL;
3. Don’t Invest is a Nash equilibrium iff c ≥ pL − p2q L;
4. Don’t Invest is a (strictly) dominant strategy equilibrium iff c > pL;
5. (Invest, Don’t Invest) is a Nash equilibrium iff c = pL and q = 1.

From item 5 above, the lone asymmetric pure strategy profile in the stage game is
an equilibrium in only a very special case, so it suffices to focus on the symmetric
equilibria.

Since the particular settings of all the parameters have considerable freedom from
a purely game theoretic perspective, we chose to explore those values of c scaled
roughly at the values commonly used in the IDS behavioral experiments. Specifically,
we fix a “baseline” setting of c = 45, and a “baseline” setting of p = 0.4.

Additionally, we vary both c and p systematically in the intervals [35, 60] and
[0.2, 0.8] respectively, each while keeping the other fixed at its baseline value.
Throughout, L is fixed at 100 and q = 0.5. We note that given the baseline settings
of c and p, the expected value IDS stage game becomes an instance of a Prisoner’s
Dilemma (Kunreuther and Heal 2003; Heal and Kunreuther 2005b).

Using the characterization above, we can arrive at the following specific single-stage
equilibria in the parameter ranges that we consider:

1. When c ∈ [0, 32), Invest is a dominant strategy equilibrium (fixing p at baseline);

2 We do not deal with the mixed strategy equilibria of the stage game here, since pure strategy equilibria
always exist in our setting.
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2. When c ∈ [32, 40], both Invest and Don’t Invest are Nash equilibria (fixing p at
baseline);

3. When c ∈ (40,∞), Don’t Invest is a dominant strategy equilibrium (fixing p at
baseline);

4. When p ∈ [0, 0.45), Don’t Invest is a dominant strategy equilibrium (fixing c at
baseline);

5. When p ∈ [045, 0.684], both Invest and Don’t Invest are Nash equilibria (fixing c
at baseline);

6. When p ∈ [0.684, 1], Invest is a dominant strategy equilibrium (fixing c at base-
line).

Our final point regarding the IDS stage game concerns efficiency of the decision to
Invest. In general, the strategy profile (Invest, Invest) Pareto dominates (Don’t Invest,
Don’t Invest) if and only if c < pL + pq L − p2q L . Fixing p to its baseline value of
0.4 and setting the remaining parameters as above, this translates to c < 52; similarly,
setting c to its baseline value of 45, gives the p > 3

2 − √
1.35 ≈ 0.338.

3.2 The Iterated IDS Game

In our simulations, the stage game in Fig. 1 (for fixed settings of all parameters) is
played a random number of times. Specifically, it is played at least once, and after every
stage, it is iterated with a fixed probability r = 0.968, giving the expected number of
rounds of ∼ 31.

A major theoretical problem with iterated games is that the set of equilibria of these
is extremely large: essentially, the entire range of “safe” (in the maxmin sense) to Pareto
efficient strategic outcomes can be supported in equilibrium (Fudenberg and Tirole
1991). One classic approach is equilibrium refinement, attempting to rule out outcomes
that fail some reasonable test (e.g., restriction to subgame perfect equilibria Fudenberg
and Tirole 1991). However, it is not clear whether subgame perfection or any other
refinement is sufficiently descriptive of human (or even computational agent) behavior.
Instead, we restrict attention to a finite set of iterated game strategies (policies) which
are loosely based on the strategies articulated by subjects playing iterated IDS scenarios
in behavioral experiments.

Aside from complicating the structure of player strategies, iterated IDS games
offer an opportunity to vary the information available to players about each other’s
past decisions. In particular, we make a distinction between full and partial informa-
tion settings. Under full information, players observe their payoffs as well as all past
decisions by their counterparts. Under partial information, players only observe their
own payoffs, but have no direct information about counterpart decisions (although
they can sometimes infer these from their payoffs). Additionally, our presentation of
the stage game and the analysis of its equilibria above makes an implicit assumption
that players only care about expected payoffs. In the iterated IDS game, we reveal
actual realizations from the distribution of payoffs, rather than expected values. Thus,
even if both players choose Don’t Invest, there are likely rounds under which they do
not incur any loss whatsoever, and in other rounds, they incur the full magnitude of the
loss. Furthermore, players can condition their strategies on actual payoff realizations,
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rather than expected values. Our strategy space includes strategies that do just that.
Note that in our setup there is a distinction between strategy sets in full and partial
information settings: some strategies that are distinct under one strategic setup can be
equivalent under another, and certain strategies can only be implemented in the full
information setting (for example, Tit-for-Tat requires knowing the counterpart’s deci-
sion in the previous round). We provide the full list of strategies and their descriptions
in Appendix.

4 A Framework for Computational Strategic Analysis

Our central contribution is to introduce and illustrate a new framework for compu-
tational strategic analysis of iterated games which is motivated by Axelrod’s tour-
naments, Axelrod and Hamilton’s desiderata of evolution of cooperation, classical
game theoretic analysis, and evolutionary game theory. (To our knowledge, this study
is the first to combine elements of all of these elements). Our framework is defined
specifically for two-player symmetric games [i.e., games in which two players share
a common set of strategies S and common utility functions u(si , s−i )]. This focus
is not in itself restrictive (there are natural ways to generalize the framework) but is
primarily to simplify notation and discussion.

At the high level, we identify the following six desiderata that expand on and
modify those proposed by Axelrod and Hamilton [these are also closely related to the
desiderata proposed by Kimbrough (2012)]:

1. Tournament Robustness: Does the strategy thrive in a heterogeneous environment?
We evaluate this with respect to a prior probability distribution over strategies in
the player population.

2. Iterated Tournament Robustness: Does the strategy thrive when played against
other high-quality strategies.

3. Stability: When played by all players, is the strategy stable in the face of unilateral
deviations?

4. Strategic Resilience: Is the strategy resilient to variations in the population of
strategies?

5. Initial Viability: Can a strategy gain a foothold in a non-cooperative environment
starting with a small number of adopters?

6. Sensitivity Analysis: What are the values of predicted outcomes as a function of
game parameters?

Our framework attempts to perform strategic analysis of two kinds: first, analysis of the
relative merits of different strategies that may be adopted in the game, and second the
impact of policy (e.g., public policy, as represented by specific game parameters) on
the strategic predicament of the players and the resulting predicted strategic outcomes.

Our framework attempts to address many common criticisms of game theoretic
analyses: it offers both a stability analysis of strategies, and an analysis of strategic
performance of each specific strategy chosen by an individual in the face of a mixture
of other strategies played by other individuals. Also, it yields a high-level analysis of
the game made relevant to policy decisions. Finally, our use of multiple desiderata,
each complementing the other, is targeted at multi-criteria decision making processes
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involved in the diverse situations in which strategy selection can be relevant, from
an individual’s choice of play in a game of interest (such as choosing an algorithmic
trading strategy), to a policy maker attempting to incentivize a particular strategy which
may or may not already be well represented in a population (such as cooperation in
social dilemmas).

The key to creating a formal framework for strategic evaluation is formalizing all
of its pieces, which we now proceed to do. First, let us abstractly define a stage game
�(z) = [I, S, u(s1, s2, z)] in which I = {1, 2} is the set of players, S and u are the
symmetric strategy set and utility function respectively. The utility function is defined
both in terms of the joint strategies of players and a game parameter vector z (which
we call a game context). Thus, our strategic evaluation will build in the impact of a
particular game context (environment). We now proceed to formalize each part of the
proposed framework.

4.1 Tournament Robustness

Axelrod’s tournament has become an extremely important paradigm in assessing the
relative value of iterated game strategies. It is thus a natural part of our framework. In
the original tournament analyses, strategies were evaluated based simply on expected
payoffs. The problem with such an evaluation is that we really wish to make a relative
comparison: it is most informative to understand performance of each strategy as
it compares to the best, rather than in absolute terms. For example, considering the
expected payoff of a particular strategy is not in itself meaningful; what matters is how
this payoff compares to the expected utility of the other strategies we are considering.
This gives rise, below, to a regret-based definition, where regret, in general terms, is
the amount by which a player would have preferred to play the best strategy, rather
than the one in question. For example, if we measure the regret of a particular strategy
s as being low, it means that s is extremely good: it is nearly as good as an optimal
option for the player. In addition to being a relative metric (allowing us to evaluate each
strategy in isolation), regret-based measures have the same interpretation regardless
of the specific criterion: smaller regret is always better, since the strategy is closer to
optimal. Consequently, we use regret-based measures for several other of our criteria
as well.

Formally, define VT (s, z) as a tournament value of a strategy s ∈ S in a game context
z. This value is a measure of quality of a given strategy against some (prior) distribution
over S (that is, over what opponents play). For example, VT in Axelrod’s tournament
was the expected payoff against a uniform mixture of all participating strategies. We
propose a slight variation and generalization of this approach. Specifically, let F(·) be
a general distribution over S. We can view this as a prior distribution over all strategies
in S; throughout, we use the uniform distribution as a running example. We then equate
VT with (the negative of) payoff regret, that is

VT (s, z) = Es′∼F [u(s, s′)] − max
t∈S

Es′∼F [u(t, s′)] = min
t∈S

Es′∼F [u(s, s′) − u(t, s′)].
(1)
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In words, VT (s, z) is the difference between the expected payoff of s and the expected
payoff of the best strategy t .

When we are dealing with finite strategy sets, the tournament value (payoff regret)
is particularly easy to compute for all strategies. Specifically, fix z, let P be the full
symmetric payoff matrix (empirical in our case), and let x be a vector representing
probabilities over pure strategies in S. Thus, for example, when x represents a uniform
distribution (as it does in our experiments below), xi = 1/|S|, where |S| is the number
of strategies in S. The expected value vector EV of all strategies can then be computed
as a matrix-vector product, EV = Px . Finally, we compute the vector

VT = −[1 max{EV } − EV ],

where max{EV } is a the maximum value in EV and 1 is the unit vector.

4.2 Iterated Tournament Robustness

The original tournament, as conceived by Axelrod, measures robustness against an
entire strategic pool, which may contain strategies that are truly poor and therefore
unlikely to be played. We therefore consider a natural extension [anticipated by Axel-
rod and Hamilton (1981)] where we perform a tournament in two stages. The first
stage proceeds to evaluate the payoff of each strategy against a prior distribution F
with respect to the entire pool (say, uniform distribution, which is what we imple-
ment below). We then identify a fraction g of best performing strategies against F .
More precisely, we rank the performance of all strategies in S, then choose g|S| best
strategies in terms of expected utility Es′∼F [u(s, s′)]. Let S′ be the resulting set of
strategies. We next define F ′ = F|S′ , that is, a distribution over strategies F restricted
to only choose strategies in S′ with positive probability (the probabilities of s′ ∈ S′
are thus renormalized). We then identify iterated tournament value VTitr with negative
tournament regret, just as in Eq. 1, but replacing F with F ′. The intuition behind the
regret-based definition of this measure is similar to that for tournament analysis above:
we simply wish to know how much worse a candidate strategy is than the best possible
(in a given consideration set), rather than what its expected payoff is in absolute terms.

4.3 Stability

Our next measure is that of strategic stability, which we refer to as VS(s, z), or stability
value. In the context of symmetric games, it is natural to focus on the stability of
symmetric strategy profiles, that is, strategy profiles in which all players play the same
strategy. Thus, in symmetric games the strategic stability measure becomes a measure
of quality of specific strategies, rather than full strategy profiles. Specifically, we let
VS(s, z) be (the negative of) game theoretic regret, defined (for a symmetric profile s)
as

VS(s, z) = min
t∈S

[u(s, s) − u(t, s)].
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The intuition behind the game theoretic regret measure is that we wish to assess
how much a player gains from making an optimal decision, rather than choosing
the strategy under consideration, when the counterpart’s decision is fixed. When the
strategy profile is symmetric, a strategy with low game theoretic regret means that
when both counterparts choose it, neither has very much to gain to make a different
choice. Another way to think about stability value is that it offers a generalization to
equilibrium analysis: a symmetric Nash equilibrium has VS(s, z) = 0, that is, there
is, by definition, no alternative strategy s′ which yields better payoff, as long as the
counterpart’s strategy is fixed at s. Since VS is non-positive by definition, all Nash
equilibria will have maximal stability value.

If the game is finite with payoff matrix P , it is particularly easy to compute a
vector VS , that is, (negative) stability regret vector of all strategies (more accurately,
all symmetric pure strategy profiles):

VS = −[max{P}T − diag(P)],

where max{P} is a columnwise maximum of the matrix P .

4.4 Strategic Resilience

A strategy may be quite good in response to a fixed pool of others, but there is often
much uncertainty about precisely which strategies are chosen by opponents. As such,
a good strategy should perform well in tournament, but also be resilient to changes in
the pool of strategies. We measure strategic resilience formally as follows. Let S = 2S

be the set of all subsets of S and let G be a distribution over S. As above, let F|T be
a prior distribution over strategies in S, restricted to only play those in T ⊂ S with
positive probability. We define strategic resilience value VS R(s, z) of a strategy s in
context z to be

VS R(s, z) = min
t∈S

VarT ∼G(Es′∼F|T [u(t, s′)]) − VarT ∼G(Es′∼F|T [u(s, s′)]).

In words, VS R(s, z) penalizes strategies s that have a high variance of expected payoffs
with respect to random subsets of S. The actual measure is calibrated with respect to a
strategy with minimal such variance (i.e., one that is most resilient to strategic variation
by the opponent).

In our implementation we let G be a uniform distribution over all subsets in S.

4.5 Initial Viability

In their work on evolution of cooperation, Axelrod and Hamilton (1981) argued that
Tit-For-Tat was efficacious in promoting cooperation in part because it was able to
survive even when there are relatively few individuals initially utilizing this strategy.
More broadly, a policy maker interested in promoting a cooperative strategy that is not
already widely deployed needs to ascertain whether such a strategy can ever viably take
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hold in a population and, if so, under what conditions. We can therefore view initial
viability as imposing a constraint for a policy maker about a selection of strategies
that can viably be promoted.

To quantify the idea of strategic viability (previously, this notion was largely quali-
tative), we must first quantify what it means for a strategy to “survive”. To that end, we
appeal to evolutionary game theory and, specifically, to replicator dynamics (Fried-
man 1991; Fudenberg and Tirole 1991). Since replicator dynamics are at the core of
our approach to measuring initial viability, as well as performing sensitivity analysis
below, we now describe (the discrete version of) it in detail.

Replicator dynamics begins with an initial population of agents, with each agent
choosing a single strategy from the entire pool S. For each strategy s in this pool we
can consequently quantify the fraction of agents, ps , choosing that strategy:

ps = number of agents playing s

total number of agents
.

Starting with this initial strategy distribution ps , replicator dynamics proceeds through
a sequence of rounds. In each round, agents are randomly paired to play an instance
of the game (in our setting, we mean the iterated game, rather than the stage game).
We can compute the expected payoff for each strategy s in the population with respect
to such random pairings; let this expectation for s be Eu(s). Prior to starting the next
round, the distribution of each strategy in the population, ps is updated to be

p′
s ∝ Eu(s),

and the process repeats. Replicator dynamics proceeds over L iterations, and frequently
(in practical experience) it converges to a symmetric mixed strategy Nash equilibrium
of the game, so long as every strategy in S has some representation in the initial agent
population (i.e., ps > 0 for all s ∈ S).

Now, suppose that we seed replicator dynamics with some probability distribution
over strategies in S in which the target strategy s is played with probability ps ; let
probabilities of other strategies in the seed distribution be denoted by p−s . Next, run
replicator dynamics until it either converges or reaches a limit L on the number of
rounds (we use 200 rounds in our simulations below); let N (z, ps, p−s) be the final
mixed strategy (population proportions) reached by replicator dynamics. We say that
survivability of strategy s is high if its probability under N (z, ps, p−s) is significantly
above 0.

To quantify how viable s is when it is underrepresented in the initial strategy pool, we
let ps = f mint∈S\s pt , where f ∈ [0, 1]; that is, s is initially played with probability
that is some fraction of the smallest probability with which any other strategy is played.
In our experiments below, we used f = 1/2 and used a uniform distribution over all
strategies other than s in the seed distribution of replicator dynamics. So, for example,
if there are 10 other strategies (11 strategies in total), every strategy is played with
probability ∼ 0.095, while the initial probability of s is ∼ 0.048.
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4.6 Sensitivity Analysis

One of the main reasons social dilemma games in general, and IDS games in partic-
ular, are of broad interest is that their analysis may enlighten policy. There has been
little attempt, however, either in tournament-style analyses, or other game theoretic
treatments of social dilemma games, to understand the impact of interventions (via
manipulation of game parameters) on predicted outcomes. The goal of this section
is to provide a general framework for doing such assessment by means of careful
sensitivity analysis in the space of policy relevant parameters of the game model.

Recall that we denote by z a collection of parameters that influence the payoff
functions of players in the game. In IDS games, parameter z could incorporate a subsidy
that helps defray some of security investment costs; equivalently, it could incorporate
the investment cost parameter itself, since a subsidy r to an initial cost c simply shifts
the investment cost to c − r . The goal of sensitivity analysis is to characterize the
outcomes of the game (e.g., in terms of Nash equilibria) as a function of z.

Formally, let N (z)be a Nash equilibrium of�(z) and define a measureμ(N (z), z) =
μ(N (z), u(N (z), z)) which quantifies an external value (e.g., a policy value) of an
equilibrium. For example, in IDS games such external value would be social utility,
and specifically in Prisoner’s Dilemma situations μ(N (z), z) would correspond to the
fraction of player decisions that are cooperative. Alternatively, μ(N (z), u(N (z), z))
may simply be the social welfare in equilibrium, which in a symmetric equilibrium of
a symmetric game can be analogously quantified by u(N (z), z). When we consider
μ with respect to some distribution over N (z), we use the simpler notation μ(z), and
keep the distribution itself implicit (a specific manner to arrive at a distribution over
N (z), which need not be analytic, is explicated below).

To perform the quantitative sensitivity analysis of policy alternatives in terms of
game parameter vector z, we map out μ(z) as a function of z for one or more such
external value measures μ. Thus, for each �(z):

1. For k = 1, . . . , K :
– Sample a mixed strategy mk uniformly randomly from the unit simplex (i.e.,

the set of all mixed strategies) over S;
– Seed replicator dynamics (Friedman 1991; Fudenberg and Tirole 1991) with

mk as the initial distribution of strategies S in the population;
– Run replicator dynamics until it either converges or reaches a limit L on the

number of rounds (we use 200 rounds in our simulations below); let N (z, mk)

be the final mixed strategy (population proportions) reached by replicator
dynamics starting at mk ;

2. Define μ(z) = 1
K

∑K
k=1 μ(N (z, mk), z), that is, the sample mean of the policy

value based on K sample runs of replicator dynamics.

Note that the final step of the framework resolves the equilibrium selection issue
computationally by producing a distribution over equilibrium outcomes by iteratively
sampling final outcomes of a replicator dynamics evolution.3

3 We are indebted for this idea to Walsh et al. (2002). It assumes that replicator dynamics converges, which
it did in every instance we had observed.
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In what follows we concretely illustrate our framework by using it to offer some
insights about the strategic landscape of iterated IDS games, as well as a policy-relevant
measure motivated by actual IDS concerns.

5 Computational Strategic Analysis of Strategies in iterated IDS Games

In this section we perform computational strategic analysis, following our framework,
of three classes of strategies in iterated IDS games. The first class involves strategies
that either punish or reciprocate the behavior of the counterpart, and includes the much
touted Tit-for-Tat. The second class includes the two strategies which prescribe that a
player either always or never invest in security. The third class of strategies focuses on
the player’s ability and desire to act based on observed realizations of negative events,
either choosing to invest, or not, in response to them. The first class of strategies only
applies in the complete monitoring setting, whereas the latter two classes are studied
both when there is full and partial feedback about the counterpart’s decision in the
previous round.

5.1 Computational Setup

We ran 500 simulations of iterated IDS instances using a NetLogo implementation4

for a collection of game parameter settings and used the data to construct empirical
payoff matrices of the iterated game (that is, average simulated payoffs of joint iterated
game strategies). Additionally, we obtained for each joint strategy of both players the
corresponding value of μ (as described below). We explored a fixed grid of c and
p values, with c ∈ {35, 40, 45, 50, 55, 60} and p ∈ {0.2, 0.4, 0.6, 0.8}. When we
varied c, we maintained p at its baseline value of 0.4 and, similarly, we varied p while
maintaining c = 45. We present our results below in two-dimensional {c, p} space
mapped out by the above parameter values. For each c and p, we plot a square box;
lighter color of this box means that the strategy under consideration performs better
for this setting of game parameters.

We partition the space of c and p values above into three significant regions:

– The first (upper left, corresponding to low investment cost and/or high probabil-
ity of direct loss) is the cooperation region: in this region, investing in security
is both Pareto dominant and a Nash equilibrium (but not necessarily a unique
equilibrium).5

– The second (lower right, corresponding to high investment cost and/or low prob-
ability of direct loss) we term the defection region, since not investing in security

4 The NetLogo implementation used for our data can be found at http://opim.wharton.upenn.edu/~sok/
netlogo/IDS-experiments.nlogo. An updated version can be found at http://opim.wharton.upenn.edu/~sok/
AGEbook/nlogo/IDS-2x2-Tournaments.nlogo.
5 We remind the reader that although IDS games have stochastic payoffs, and the behavioral experiments
have shown that this matters to players in laboratory studies, our discussion here proceeds in terms of the
estimated expected values realized by our computational experiments.
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Fig. 2 Relative tournament performance (as measured by VT ) of the three punishment and reciprocity
strategies. Lighter boxes correspond to lower “tournament regret” and, therefore, better performance in
tournament relative to the best strategy

is both a dominant strategy Nash equilibrium and a Pareto optimum for this set of
c and p values.

– The third, intermediate, region is the robustness region. In this region, security
investment is Pareto dominant, but is also strictly dominated by non-investment in
the IDS stage game; in other words, these settings of c and p make the IDS game
a Prisoner’s Dilemma.

5.2 Strategic Punishment and Reciprocity

One of the most significant findings in the original work on tournaments in Prisoner’s
Dilemma games by Axelrod was that Tit-for-Tat (TFT) was the top performer. An
extremely appealing aspect of this strategy is its interpretation as exhibiting strategic
punishment (when the counterpart defects) and reciprocity (as long as the counterpart
cooperates). One can, in principle, define a class of strategies with similar structure,
where one can be more forgiving of defections, or more punishing. We consider three
examples from this class: Tit-for-Tat, 1-Tit-for-2-Tats (more forgiving; we abbreviate
it as 1TF2T), and 2-Tits-for-1-Tat (more punishing; abbreviated as 2TF1T), which we
compare below based on the five metrics identified in our general framework.

Tournament Performance Our first comparison is that of tournament performance of
the three variants of strategic punishment and reciprocity strategies, shown in Fig. 2.
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Fig. 3 Relative performance in a tournament of punishment and reciprocity strategies in which only the top
1/3 strategies participate (based on performance in the “standard” tournament). Measured by VTitr , lighter
boxes correspond to lower “iterated tournament regret”, or better performance as compared to the best

First, notice that there is no distinction between these strategies in the defection
region: all perform quite poorly. This observation agrees with intuition: when defec-
tion is clearly superior, there is no sense in doing anything else (e.g., reciprocating
cooperation). In the cooperation region TFT is superior to the others. The punishing
strategy is clearly worse because investing is both a Pareto optimal and an equilibrium
strategy here. The forgiving strategy is particularly vulnerable when there are two
equilibria, since it doesn’t adjust to play the defection equilibrium as quickly (e.g.,
when the counterpart Never Invests).

A surprise emerges when we inspect the robustness region: here (in the baseline
setting) the punishing strategy is superior to TFT, which is better than the forgiving
variant. Recall that this region corresponds to a Prisoner’s Dilemma payoff structure.
It thus appears that TFT (in its traditional incarnation) is not sufficiently punitive
in certain Prisoner’s Dilemma incarnations. For the strategic pool we consider, it is
therefore at a greater disadvantage compared to defecting strategies (e.g., Never Invest)
when paired against consistent cooperators who occasionally defect with some fixed
probability.

Iterated Tournament Performance Our next step is to measure the strategies in terms
of their iterated tournament performance.

The results for the class of strategies involving punishment and reciprocity are
shown in Fig. 3. Interestingly, the picture that emerges here is somewhat different than
the one observed under the classical tournament analysis above. The first difference is
that here the forgiving strategy is actually the best in the cooperation region. The reason
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Fig. 4 Stability (VS ) of symmetric equilibria corresponding to the punishment and reciprocity strategies.
Lighter boxes correspond to higher stability, meaning that a player has less to gain by changing his strategy
when the counterpart’s strategy remains unchanged

is that iterating the tournament even once eliminates many defectors in this region;
now it pays to forgive. The second difference is that now TFT and the punishing variant
are no different in the robustness region, though both are still better than the forgiving
strategy. Indeed, both TFT and 2TF1T are now worse (“marginal”): it appears that
initially iterating the tournament promotes greater defection in the robustness region.

Equilibrium Stability Equilibrium stability is a fundamentally different measure than
those based on the tournament. Here, we are concerned purely with stability of a
strategy to deviations; in other words, we favor a strategy which, when played by the
two counterparts, is nearly the best one for both.

We present the results of stability analysis for the punishment and reciprocity strate-
gies in Fig. 4. All strategies are actually rather similar in that regard, except in the
robustness region, where the punishing variant is more stable than the others; 2TF1T
appears quite stable (nearly a symmetric Nash equilibrium) in the entire robustness
region.

Strategic Resilience Figure 5 compares strategic resilience of the punishment and
reciprocity strategies. In the cooperation region, the forgiving strategy is the most
resilient to opponent variation, slightly more so than TFT, while the punishing strategy
is the least. This echos our observation for the iterated tournament measure. It’s more
resilient than both alternatives in the region where investing in security is a dominant
strategy, since cooperation is a best response no matter what the opponent plays, so
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Fig. 5 Strategic resilience (resilience to variation in opposing strategies) of the punishment and reciprocity
strategies, as quantified by VS R(s, z). Lighter boxes correspond to higher resilience

being forgiving means greater propensity to invest even when the counterpart does
not. The forgiving strategy is superior to the punishing variant even when there are
two equilibria likely because punishment may push the counterpart to play the socially
inferior equilibrium. The three punishment and reciprocity strategies are identical in
the defection region, but the punishing strategy is the most resilient in the robustness
region, just as we had observed using most of the other measures of strategic quality.

Initial Viability Our final measure of strategic quality is whether a strategy can sur-
vive when initially underrepresented in the population. Figure 6 explores this initial
viability property as it pertains to the punishment and reciprocity strategies. The main
observation here agrees with the previous measures: the punishing variant of TFT is
not very viable in the cooperation region (likely for similar reasons), but is better than
the other variants in the robustness region.

Summary Our metrics of strategic quality are in broad agreement about relative efficacy
of the three punishment and reciprocity strategies that we study. Here we summarize
our main observations:

– The punishing strategy is generally the best in the robustness (“Prisoner’s
Dilemma”) region, particularly as defection yields greater gain due to the high
investment cost if one cooperates;

– The three strategies considered in this section are all quite poor in the defection
region, while the classic TFT as well as its forgiving variant are generally good in
the cooperation region;
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Fig. 6 Initial viability of punishment and reciprocity strategies

– A multi-stage tournament is unfavorable to the TFT variants: for some values of
joint parameters, even in the cooperation region, none of these is close to optimal
(with mostly cooperative strategies left after the first tournament round, ability to
punish seems to be somewhat disadvantageous here). Indeed, even in the region of
parameters corresponding to the widely studied “Prisoner’s Dilemma” (we term it
the robustness region), TFT can be among the worst performers on this criterion;

– TFT and related strategies are weak on the Initial Viability metric even in the
cooperation region. This suggests that effectiveness is likely to be quite limited if
the initial strategic pool does not already include a significant amount of cooper-
ation, which is precisely the context where policy would likely be deployed (after
all, if cooperation is already relatively dominant, there is no need to institute any
intervention). The most effective policy intervention would therefore first provide
incentives to significantly increase the tendency to invest in security (for example,
making it a dominant strategy), and the incentives may subsequently be reduced
once a sustainable level of cooperation is reached. This situation bears similarity
to introduction of new and superior technologies (e.g., QUERTY vs. DVORAK
keyboard layout) where an inferior technology already has significant network
effects; the first step is to overcome network effects, at which point the better
technology can sustain itself (Rogers 2003).

5.3 Consistent Strategies: Always and Never Investing

In this section we consider the two simplest IDS strategies: Always and Never Invest.
Both of these play the corresponding one-shot strategy in every round of the game,
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Fig. 7 Relative tournament performance (as measured by VT ) of Always and Never Invest strategies.
Lighter boxes correspond to lower “tournament regret” and, therefore, better performance in tournament
relative to the best strategy

hence our use of the term “consistent”. They are also, in a sense, the two extremes:
always invest is an extreme example of cooperation, while Never Invest is the ultimate
defection strategy. These strategies are well defined in both full and partial feedback
setting; we therefore compare their performance in both of these cases.

Tournament Performance We begin again with the comparison of Always and Never
Invest strategies based on the tournament. The results, shown in Fig. 7 suggest that
Never Invest is clearly superior to Always Invest in every setting where defection is
a dominant strategy (the defection and robustness regions); indeed, it is nearly the
best strategy in these regions. The likely reason is that Never Invest gains more from
exploiting weak strategies (either non-adaptive, such as Always Invest, or those that
adapt poorly, such as investing or not investing after a loss) than it loses (relative to,
say, TFT) by not cooperating with adaptive and cooperative strategies. Matters are
somewhat more interesting in the cooperation region. While Always Invest is highly
effective through most of this region, the relative quality of Never Invest depends on
whether the setting involves full or partial monitoring. Under full monitoring, Never
Invest is quite poor in the cooperation region; when there is only partial monitoring,
however, Never Invest is nearly optimal in a large fraction of it (c ≤ 40, when p =
0.4). The key reason for this distinction is that under partial monitoring, cooperation-
promoting strategies which are based on punishment and reciprocity (e.g., TFT) cannot
be implemented when we don’t know whether the counterpart invested or not. Thus,
defection remains a highly efficacious candidate.
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Iterated Tournament Performance Iterated tournament comparison is quite favorable
to Never Invest: it is now highly efficacious in nearly all settings (in both full and partial
feedback). Always Invest also benefits, albeit slightly: it now exhibits uniformly high
quality in the cooperation region.

Equilibrium Stability In terms of equilibrium stability, partial feedback is unfavorable
to Always Invest, and favorable to Never Invest. The reason is that, as we noted above,
absence of punishment and reciprocity strategies removes high quality alternatives to
defection, making it more efficacious across a broad array of IDS game structures.

Initial Viability The initial viability results broadly support the main observation of this
section that partial feedback promotes defection, as compared to full feedback in the
robustness and defection regions: under partial feedback, Never Invest emerges as a
significant player in the strategy population even when significantly under-represented
at the beginning across a wide array of IDS parameters.

Summary The central finding in this section is that partial feedback promotes defection,
making the Never Invest strategy more viable and effective across a broad array of
game parameters. The basic problem encountered when players cannot monitor each
other’s actions is that there is little upon which to base reciprocity and punishment.
When selfish, but socially damaging, actions are not observable, it is no surprise that
a much larger proportion of the population will perform such actions. Ostrom (2009)
offers examples of effective “self-organized” systems for managing commons, where
perpetrators of asocial actions are punished by the community. For example, fishing
fleets in Gloucester, MA developed a system of rules and penalties, which become
incrementally more severe for repeated offenses (for example, after a third offense,
lobstermen break the trap of the fisherman who breaks the rules). Such rules and
penalties are only communally enforceable if the rule breaking actions are observable,
that is, correspond to our notion of “monitoring”. In the case where it’s difficult to
observe asocial actions, Ostrom observes that self organization is far more difficult
to achieve, and “defection” prevails. In such a situation, the policy maker’s options
are either to significantly increase the relative payout of socially desirable actions
(e.g., through subsidies), or to increase the means of monitoring activity (for example,
increase the size of the police force).

5.4 Loss-Conditional Strategies

Our final set of strategic analyses pertains to strategies that appear to be closely related
to human behavior in stochastic settings. People tend to react strongly to a recent
negative event, a behavior that is a special case of the availability heuristic (Camerer
and Kunreuther 1989). In our case, the negative event is a loss, be it due to a direct or
indirect exposure. The two possible reactions in IDS games are to invest (giving rise
to the invest after loss strategy) and not to invest (yielding the don’t invest after loss
strategy). The don’t invest after loss strategy has partial resemblance to Tit-for-Tat: a
loss can be viewed as an indication of non-cooperative (non-investment) behavior by
the counterpart, and the appropriate punishment is to stop investing.
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Fig. 8 Relative tournament performance (as measured by VT ) of the two strategies that invest and don’t
invest after loss, respectively. Lighter boxes correspond to lower “tournament regret” and, therefore, better
performance in tournament relative to the best strategy

Tournament Performance Our findings regarding the two loss-conditional strategies
(invest and don’t invest after a loss) are highly consistent across the different measures
(with the exception of viability, to which we turn presently), and we therefore focus
only on their performance in the tournament.

Figure 8 paints a very negative qualitative picture of these two strategies. First,
observe that there is little qualitative difference between the two strategies: both are
very poor in the defection region, and both are marginal or poor in the rest of the {c, p}
landscape. Investing after a loss seems to be somewhat better than not in the cooperation
region, a rather intuitive finding since here cooperation (investing) is indeed a superior
strategy. Overall, however, neither strategy is very close to optimal throughout the
entire landscape, save a couple of exceptions when investment costs are lowest and
only partial feedback is available, in which case investing after a loss does well. The
poor performance of these strategies is rather significant, and quite surprising. In the
partial feedback setting, not investing after experiencing a loss is reminiscent of TFT,
as we noted above, and yet its efficacy does not come near that of TFT. The reason is
that the response to a loss is not sufficiently correlated with a counterpart’s decision:
a loss could be either direct or indirect, and, moreover, the counterpart may well not
invest for a long time before he is discovered when a loss is finally experienced.
Moreover, these being strategies that are similar to those employed by humans in
analogous situations, our results have important policy implications: a policymaker
interested in socially desirable outcomes should use information campaigns to steer
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Table 1 Qualitative performance of the strategies and strategy classes that we have studied in depth. “++”
indicates near-optimal performance on all criteria; “+/ + +” means near-optimal performance on all but
one criterion in nearly the entire region; “+” means near-optimal performance on most criteria in most
parts of the region; “0” means near-optimal on some criteria in some portion of the region, and not on other
criteria; “−” means poor on most criteria; “−−” means among the worst on all or nearly all criteria

Strategy name Cooperation Robustness Defection

Full
feedback

Partial
feedback

Full
feedback

Partial
feedback

Full
feedback

Partial
feedback

Always Invest +/ + + +/ + + −− −− −− −−
Never Invest 0 0 +/ + + ++ ++ ++
Punishment/reciprocity

(TFT-variants)
0 N/A 0 N/A −− N/A

Loss-conditional − 0 − − −− −−

people away from such highly exploitable strategies. (Indeed, somewhat in contrast
with many previous studies of IPD, all of the strategies we consider are actually based
on observed behavior in actual IDS experiments.)

Initial Viability Initial viability offers an entirely one-sided story for the loss-response
strategies: neither is viable when initially underrepresented in the population, in any of
the settings we studied. Given the extremely poor quality of these strategies described
above, this is actually good news: if a policy can shift behavior away from adopting
such strategies initially, it is unlikely they will take root in the future.

5.5 Best-Performing Strategies

Overall performance of the different strategies and classes of strategies we have con-
sidered is shown schematically in Table 1. We now summarize the best performers
from these classes in each of the three regions of the IDS parameter space.

Cooperation Region With the exception of initial viability, TFT and/or at least one of its
derivatives, as well as Always Invest, tend to be near-optimal in the cooperation region
on all metrics when there is full feedback (there are a few qualifications to that, which
we described and explained above). With partial feedback, Never Invest becomes near-
optimal as well in a portion of that region. The reason for that is two-fold: Never Invest
is also an equilibrium in this region, and strategies involving punishment and reci-
procity become difficult to support, removing a strong barrier to defecting strategies.

Robustness (Prisoner’s Dilemma) Region In the robustness (Prisoner’s Dilemma)
region, Never Invest is in every case among the top performers (although not nec-
essarily the optimal strategy). While variants of TFT are often in the near-optimal
class as well, this is only the case for a subset of settings and criteria; indeed, their
tournament performance is not among the (near-)optimal strategies, although it is
often near-optimal in the iterated tournament setting (previous tournament compar-
isons which yield TFT as the best strategy generally include relatively sophisticated
alternatives, whereas our tournament includes a number of relatively bad strategic
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choices, such as investing after a loss, which are also highly exploitable by Never
Invest).

Defection Region In the defection region, Never Invest is both a stage game dominant
strategy and a Pareto optimum. Thus, while Never Invest is always among near-optimal
strategies in this setting, none of the other strategies that we studied in depth here are
near-optimal.

6 Propensity to Invest in Iterated IDS Games

From a policy perspective, a key reason to study IDS games is to explore the impact of
decision externalities among players and consider what policy tools can be effective at
bringing about socially superior outcomes. Over a broad range of parameters of IDS
games, invest decisions by both players Pareto dominate all the other pure strategy
profiles. However, investing may be against individual self-interest, as it is when IDS
parameters indicate that “Not Invest” is a dominant solution, as is the case in social
dilemmas when outcomes are deterministic. A natural question for a policymaker is
how to incentivize socially desirable outcomes through minimal intervention.

Two useful incentives in the policy toolbox are subsidies on socially desirable deci-
sions, or fines for socially undesirable ones. Concretely, in IDS games let us suppose
that we wish to incentivize players to invest in security, at least where investment
outcomes are Pareto optimal. For simplicity, we suppose that the policymaker offers
a subsidy r to those who choose to invest. The effect of this subsidy on the game
structure is to lower the effective investment cost from c to c − r . Equivalently, rather
than studying the impact of r on outcomes directly, we proceed to engage in sensitivity
analysis of game outcomes, in terms of propensity of players to invest (cooperate), in
terms of the cost of investing in security, c.

Formally, let f be the expected fraction of players to invest in the game equilibrium
reached by replicator dynamics (following the process we outlined in Sect. 4). We wish
to get a handle on the function f (c), fixing p to its baseline value of 0.4. The goal is
to choose c such that f (c) is high enough. On the other hand, we wish to make r as
small as possible, since subsidies are costly.

Another question of interest to a policymaker is the impact of the probability of
direct loss, p, on the propensity of players to invest, f (p). In terms of actual policy
implications, the policymaker may be able to impact the perception of p by the agents
engaging in security decisions, by making the possibility of a loss more salient to them
(e.g., through advertising).

In addition to studying investment behavior as a function of parameters c and p, of
vital interest to policy is the impact of monitoring (in our terminology, full and partial
feedback) on the number of agents who invest in security, as well as on the efficacy
of policy instruments such as fines and subsidies. Thus, we present f (c) and f (p) for
both full and partial feedback settings below.

6.1 Impact of Subsidy on Investment

We now present one of our main results: the impact of increasing investment cost
on propensity of players to invest in security. We quantify this propensity as the
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Fig. 9 Proportion of cooperation versus cost in full and partial information games

expected fraction of investors in the long run of replicator dynamics, averaged over
runs seeded with a uniformly random initial distribution of strategies (described in
detail in Sect. 4.6). Figure 9 shows several provocative results. First, the gap between
full and partial feedback is dramatic. At the highest cost (c = 60) both partial and full
feedback conditions lead to Not Invest. However, in the full feedback condition when
c < 50 most players Invest even though Not Invest is a dominant strategy equilibrium
until c ≥ 40 and is a Nash equilibrium if c > 32. When there is partial feedback, only
when c = 35 do most players follow the strategy Invest. From a policy perspective,
it may well be more cost effective to regulate and enforce a high level of monitoring
than incentivize investment in the partial feedback setting.

The second surprising observation is that investment levels do not increase gradually
as investment cost falls. Instead, we have what appear to be phase transitions at c = 50
for full feedback and at c ≈ 35 for partial feedback. This is quite significant, since it
suggests that small subsidies or penalties may have either no impact at all, or cause a
sea change.6

One reason that subsidies do not necessarily help in the IDS game we study is
that the game involves only two players, both identical (homogeneous). When players
have heterogeneous preferences, and these are common knowledge, subsidizing a few
carefully selected players (e.g., those with smaller investment costs) can tip the others
to invest. As an example, if one considers investing in a sprinkler system in a large
building, this positive impact of this investment may be almost negligible if no one
else is investing, since the fires originating elsewhere will still do significant damage
to the unit. On the other hand, when nearly all others (particularly, close neighbors)
have also installed sprinklers, their joint operation is likely to stop fires from doing
much damage before spreading, and the marginal impact of installing a sprinkler
may now be well worth the investment. With heterogeneous preferences, it may be
far easier to incentivize tenants whose preferences are already easy to tip towards

6 Note that the observed phase transitions are not immediate from stage game analysis, since the phase
transition points do not correspond to the stage game transitions between equilibria.
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Fig. 10 Proportion of cooperation versus cost in full and partial information games

investing. Since the investment by these players may make investment worthwhile for
others, subsidizing these tenants so that they invest may be quite effective in ultimately
inducing a socially desirable outcome. As an another example of the importance of
heterogeneity in preferences, it could be that several tenants are far more likely to
start a fire than others, and by targeting specifically these tenants, a policy maker may
achieve a higher investment level overall at a lower total expected costs. (See Heal
and Kunreuther 2005b for further discussion).

6.2 Impact of Probability of Direct Loss on Investment

Our final consideration of this section is an analysis of propensity to invest as a function
of direct loss probability p. Figure 10 shows the results, which take a familiar form:
there is a dramatic difference between full and partial monitoring settings, and in both
there appears a distinct phase transition from non-investment to full investment levels.
For policy purposes, regulating the level of monitoring, whenever feasible, seems again
of vital importance. Additionally, the sharp boundaries suggest that small differences
between particular strategic scenarios in which the players may find themselves can
make a dramatic difference. Thus, it may even pay to slightly alter peoples’ perceptions
of the probabilities of direct loss. As an example, it is known that adding detail into a
description of an event makes it appear more likely (Camerer and Kunreuther 1989).
Shifting focus to losses, and adding details to their descriptions, may therefore make
it sufficiently vivid to push the population towards significant investment in security.

7 Discussion and Policy Implications

We presented an extensive framework for strategic and policy analysis of general
games, with special focus on social dilemma scenarios. As an illustration, we chose an
important setting involving security decisions with externalities, commonly referred to
as IDS games. IDS games characterize a variety of strategic predicaments, including a
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Prisoner’s Dilemma. Therefore, considering various combinations of parameter values
provides us with general insight about this class of games both from a strategic and
public policy perspective.

Our first set of results pertains to the relative efficacy of strategies across the strategic
IDS settings we considered. Broadly, we found that Tit-for-Tat, while reasonably
effective in a variety of settings, is not quite as robust in social dilemma situations as its
more punishing variant, 2-Tits-for-1-Tat. We observed, additionally, that strategies that
condition decisions on a recently observed loss are almost universally poor choices.

One of our most significant results from a public policy perspective is the impor-
tance of monitoring past decisions of a counterpart. When monitoring is allowed (as
it was in the original Axelrod tournaments, and in most follow-up work), cooperative
strategies perform significantly better than in the partial feedback (no monitoring)
settings. A strategy like Tit-for-Tat cannot be directly implemented when one cannot
monitor opponent actions, and strategies that respond to a loss perform quite poorly.
This implies that when agents are uncertain as to what action their counterparts have
taken one may need to consider well-enforced regulations and standards to obtain
cooperation. Alternatively, subsidizing or fining key players to induce them to coop-
erate may lead others to follow suit as shown by Heal and Kunreuther (2005b).

Our sensitivity analysis, which mapped out an expected fraction of security invest-
ment in the population as a function of investment cost c and the probability of direct
loss p corroborates the significance of monitoring: a remarkably large gap exists
between the fraction of investors under full and partial monitoring settings. Indeed,
the response to possible policy interventions such as subsidies on investment deci-
sions (intervention that lowers c) or attempts to make the possibility of loss due to
non-investment (intervention that increases perceived p) exhibits a phase transition:
in the vast expanse of the parameter regions, even substantial changes to either c or
p have almost no impact. However, if the current social dilemma features happen to
fall near a transition boundary, even a small intervention can have dramatic impact.
In contrast, increasing the level of monitoring, perhaps through direct regulation, is
likely to effect a dramatic impact on the level of security investment over a broad space
of strategic IDS predicaments.

While our application was restricted to two-player homogeneous (symmetric) IDS
games, our framework is more general. Indeed, we presented it in the context of
an arbitrary number of players, although we did maintain symmetry. Heterogeneity
of players, of course, is a real phenomenon, and can give rise to interesting policy
relevant phenomena, such as tipping. It is, therefore, a natural subject for future work
to extend the formal analysis framework to asymmetric interactions, and apply it to
games with heterogeneous players. Another strong assumption that we have made is
that of complete information, at least from the perspective of the analyst. In future
work, it will be important to allow the analyst, as well as the players, to have private
information, for example about the cost of investing in security.
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8 Appendix

8.1 Description of Strategies

8.1.1 Full Feedback

Our consideration set of strategies in the full information context is

1. Prob(I)=0.7: play Invest with probability 0.7 (approximately the probability of
Invest in early rounds of the human subject experiments)

2. Prob(I)=0.2: play Invest with probability 0.2 (approximately the probability of
Invest in later rounds of the human subject experiments)

3. AlwaysInvest: Invest no matter what the opponent does
4. NeverInvest: Don’t Invest no matter what the opponent does
5. TFT : classic Tit-for-Tat strategy
6. InvestAfterLoss: Invest after experiencing a loss
7. InvestNAfterLoss: A player using InvestNAfterLoss does not invest on the first

round, and continues to not invest, except for the N rounds immediately following
a loss, whether direct or indirect. N is set to 3 for these experiments.

8. DontInvestAfterLoss: Don’t Invest after experiencing a loss
9. 1TitFor2Tats: same as Tit-for-Tat except wait until the counterpart plays Don’t

Invest for two rounds in a row before responding with Don’t Invest
10. 2TitsFor1Tat: same as Tit-for-Tat except respond with two consecutive rounds of

Don’t Invest to any Don’t Invest decision by the counterpart
11. FictiousPlay: plays a best response to the observed (empirical) mixed strategy of

the counterpart

8.1.2 Partial Feedback

The set of policies used in partial feedback games is

1. Prob(I)=0.7: same as above
2. Prob(I)=0.2: same as above
3. AlwaysInvest: same as above
4. NeverInvest: same as above
5. InvestAfterLoss: same as above
6. InvestNAfterLoss: same as above
7. DontInvestAfterLoss: same as above
8. TitForTatPlusLossInvest: partial feedback analog of Tit-for-Tat, where a player

responds only when the Don’t Invest decision by the opponent is inferred (i.e.,
when he experiences the indirect loss); in addition, Invest after experiencing a loss
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9. TitForTatPlusLossNotInvest: partial feedback analog of Tit-for-Tat, where a player
responds only when the Don’t Invest decision by the opponent is inferred (i.e., when
he experiences the indirect loss); in addition, Don’t Invest after experiencing a loss

10. TitForTatPlusSticky: Under full feedback a player knows whether the counter-
part has invested in security during the previous rounds of play. In this strategy,
the player plays a tempered form of Tit-for-Tat. The player cooperates until the
the Don’t Invest decision by the opponent is inferred (i.e., when he experiences
the indirect loss), then defects and continues to defect until the counterpart has
cooperated N = 3 times in a row.
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